A. | (-32,0) | B. | (-16,0) | C. | (-8,0) | D. | (-4,0) |
分析 作函数$f(x)=\left\{\begin{array}{l}\frac{1}{2}x,x≤0\\{x^2}-4x,x>0\end{array}\right.$与y=m的图象,设x1<x2<x3,易知-4<m<0;从而可得x1=2m,x2x3=-m,从而解得.
解答 解:作函数$f(x)=\left\{\begin{array}{l}\frac{1}{2}x,x≤0\\{x^2}-4x,x>0\end{array}\right.$与y=m的图象如下,
,
不妨设x1<x2<x3,易知-4<m<0;
故$\frac{1}{2}$x=m或x2-4x-m=0,
故x1=2m,x2x3=-m,
故x1x2x3=2m(-m)=-2m2,
∵-4<m<0,∴0<m2<16,
∴-2m2∈(-32,0);
故选:A.
点评 本题考查了分段的函数的应用及数形结合的思想应用,同时考查了韦达定理的应用.
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=$\sqrt{x}$ | B. | y=$\frac{1}{\sqrt{x}}$ | C. | y=$\frac{1}{x}$ | D. | y=x2+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=1 | B. | x-y+1=0 | C. | x+y+1=0 | D. | x-y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com