精英家教网 > 高中数学 > 题目详情
1.为改善城市雾霾天气造成的空气污染,社会各界掀起净化、美化环境的热潮.某单位计划在办公楼前种植 A,B,C,D四棵风景树,受本地地理环境的影响,A,B两棵树种成活的概率均为$\frac{1}{2}$,另外两棵树种的成活率都为a(0<a<1).
(1)若出现A,B有且只有一棵成活的概率与C,D都成活的概率相等,求a的值;
(2)当a=$\frac{2}{3}$时,记ξ为最终成活的树的数量,求ξ的分布列和期望.

分析 (1)A,B两棵树的成活的概率均为$\frac{1}{2}$,另外两棵树C,D成活概率都为a(0<a<1),出现A,B有且只有一棵成活的概率与C,D都成活的概率相等,可得2×$\frac{1}{2}×(1-\frac{1}{2})$=a2
(2)由题设知ξ的所有可能取值为0,1,2,3,4.P(ξ=0)=${∁}_{2}^{0}(1-\frac{1}{2})^{2}•$${∁}_{2}^{0}(1-\frac{2}{3})^{2}$,P(ξ=1)=${∁}_{2}^{1}×\frac{1}{2}×(1-\frac{1}{2})$×${∁}_{2}^{0}$×$(1-\frac{2}{3})^{2}$+${∁}_{2}^{0}(1-\frac{1}{2})^{2}$$•{∁}_{2}^{1}•\frac{2}{3}$×$(1-\frac{2}{3})$,P(ξ=3)=${∁}_{2}^{2}(\frac{1}{2})^{2}•{∁}_{2}^{1}$$•\frac{2}{3}×(1-\frac{2}{3})$+${∁}_{2}^{1}$×$\frac{1}{2}×(1-\frac{1}{2})$$•{∁}_{2}^{2}(\frac{2}{3})^{2}$.P(ξ=4)=${∁}_{2}^{2}(\frac{1}{2})^{2}•{∁}_{2}^{2}(\frac{2}{3})^{2}$,P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)-P(ξ=4).

解答 解:(1)∵A,B两棵树的成活的概率均为$\frac{1}{2}$,另外两棵树C,D成活概率都为a(0<a<1),
出现A,B有且只有一棵成活的概率与C,D都成活的概率相等,
∴2×$\frac{1}{2}×(1-\frac{1}{2})$=a2,∴a=$\frac{\sqrt{2}}{2}$.
(2)由题设知ξ的所有可能取值为0,1,2,3,4.
P(ξ=0)=${∁}_{2}^{0}(1-\frac{1}{2})^{2}•$${∁}_{2}^{0}(1-\frac{2}{3})^{2}$=$\frac{1}{36}$.
P(ξ=1)=${∁}_{2}^{1}×\frac{1}{2}×(1-\frac{1}{2})$×${∁}_{2}^{0}$×$(1-\frac{2}{3})^{2}$+${∁}_{2}^{0}(1-\frac{1}{2})^{2}$$•{∁}_{2}^{1}•\frac{2}{3}$×$(1-\frac{2}{3})$=$\frac{1}{6}$.
P(ξ=3)=${∁}_{2}^{2}(\frac{1}{2})^{2}•{∁}_{2}^{1}$$•\frac{2}{3}×(1-\frac{2}{3})$+${∁}_{2}^{1}$×$\frac{1}{2}×(1-\frac{1}{2})$$•{∁}_{2}^{2}(\frac{2}{3})^{2}$=$\frac{1}{3}$.
P(ξ=4)=${∁}_{2}^{2}(\frac{1}{2})^{2}•{∁}_{2}^{2}(\frac{2}{3})^{2}$=$\frac{1}{9}$.
P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)-P(ξ=4)=$\frac{13}{36}$.
可得分布列:

ξ01234
P$\frac{1}{36}$$\frac{1}{6}$$\frac{13}{36}$$\frac{1}{3}$$\frac{1}{9}$
E(ξ)=$0×\frac{1}{36}$+1×$\frac{1}{6}$+2×$\frac{13}{36}$+3×$\frac{1}{3}$+4×$\frac{1}{9}$=$\frac{7}{3}$.

点评 本题考查了随机变量的概率计算公式及其数学期望、相互独立与互斥事件的概率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知一个几何体的三视图及其尺寸如图所示(单位:cm),则它的表面积为24πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知两个不同的平面α、β和两个不重合的直线m、n,有下列四个命题:
①若m∥n,m⊥α,则n⊥α;
②若m∥α,α∩β=n,则m∥n;
③若m⊥α,α⊥β,n?β,则m∥n; 
④若m⊥α,α∥β,则m⊥β.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a,b,c分别为A,B,C的对边,且a2+b2=c2-ab,则C的大小是(  )
A.120°B.90°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等差数列{an}中,若a2+a8=8,则数列{an}的前9项和S9=36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知{an}为等差数列,且an+1+an+2=3n+5(n∈N*),则a1等于(  )
A.$\frac{5}{4}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知复数z=3+4i对应点为A,且z恰好为二次方程x2+px+q=0的一个根.
(1)求实数p,q的值;
(2)若点O为原点,求与$\overrightarrow{OA}$同向的单位向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的各项均为正数,且a2=4,a3+a4=24.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=3,b2=6,且{bn-an}是等差数列,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若α是第二象限角,那么$\frac{α}{2}$和2α都不是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

同步练习册答案