精英家教网 > 高中数学 > 题目详情

【题目】已知a为实数,函数f(x)=ex﹣2x+2a,x∈R.
(1)求函数f(x)的极值;
(2)求证:当a>ln2﹣1且x>0时,ex>2x﹣2a.

【答案】
(1)解:∵f(x)=ex﹣2x+2a,x∈R,

∴f′(x)=ex﹣2,x∈R.令f′(x)=0,得x=ln2.

于是当x变化时,f′(x),f(x)的变化情况如下表:

x

(﹣∞,ln2)

ln2

(ln2,+∞)

f′(x)

0

+

f(x)

单调递减

2(1﹣ln2+a)

单调递增

故f(x)的单调递减区间是(﹣∞,ln2),单调递增区间是(ln2,+∞),

f(x)在x=ln2处取得极小值,极小值为f(ln2)=eln2﹣2ln2+2a=2(1﹣ln2+a)


(2)证明:设g(x)=ex﹣2x+2a,x>0,

于是g′(x)=ex﹣2,x>0.

由(1)知,当x∈(0,ln2)时,g′(x)<0,当x∈(ln2,+∞)时,g′(x)>0,

g(x)最小值为g(ln2)=eln2﹣2ln2+2a=2(a﹣ln2+1).

于是当a>ln2﹣1时,对任意x∈(0,+∞),都有g(x)>g(ln2)>0.

从而,当a>ln2﹣1且x>0时,ex>2x﹣2a


【解析】(1)由f(x)=ex﹣2x+2a,x∈R,知f′(x)=ex﹣2,x∈R.令f′(x)=0,得x=ln2.列表讨论能求出f(x)的单调区间及极值;(2)设g(x)=ex﹣2x+2a,x>0,于是g′(x)=ex﹣2.由(1)知当a>ln2﹣1时,g(x)最小值为g(ln2)=2(1﹣ln2+a).于是当a>ln2﹣1且x>0时,都有g(x)>0,即ex>2x﹣2a.
【考点精析】通过灵活运用函数的极值与导数和函数的最大(小)值与导数,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 满足| |=| =1,且|k + |= | ﹣k |(k>0),令f(k)= . (Ⅰ)求f(k)= (用k表示);
(Ⅱ)若f(k)≥x2﹣2tx﹣ 对任意k>0,任意t∈[﹣1,1]恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=2,a2=3,an>0,且满足an+12﹣an=an+1+an2(n∈N*).
(1)求数列{an}的通项公式;
(2)设 ,求数列{bn}的前n项和Tn
(3)设 (λ为正偶数,n∈N*),是否存在确定λ的值,使得对任意n∈N* , 有Cn+1>Cn恒成立,若存在,求出λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,则(
A.f(x)在(0,+∞)上是增函数
B.f(x)在 上是增函数
C.当x∈(0,1)时,f(x)有最小值
D.f(x)在定义域内无极值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m
(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为
(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中 ①若loga3>logb3,则a>b;
②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);
③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;
④函数 既是奇函数又是减函数.
其中正确的命题有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中a为非零实数),且方程 有且仅有一个实数根. (Ⅰ)求实数a的值;
(Ⅱ)证明:函数f(x)在区间(0,+∞)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=﹣ x2+bln(x+2)在区间[﹣1,2]不单调,则b的取值范围是(
A.(﹣∞,﹣1]
B.[8,+∞)
C.(﹣∞,﹣1]∪[8,+∞)
D.(﹣1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 的值域为 . (其中[x]表示不大于x的最大整数,例如[3.15]=3,[0.7]=0.)

查看答案和解析>>

同步练习册答案