已知函数f(x)=ln(x+1)+ax2-x,a∈R.
(1)当时,求函数y=f(x)的极值;
(2)是否存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b)?若存在,求实数a的取值范围,若不存在,请说明理由.
(1)在x=1处取到极小值为,在x=0处取到极大值为0;(2).
解析试题分析:(1)将代入函数f(x)解析式,求出函数f(x)的导函数,令导函数等于零,求出其根;然后列出x的取值范围与的符号及f(x)的单调性情况表,从表就可得到函数f(x)的极值;(2)由题意首先求得:,故应按分类讨论:当a≤0时,易知函数f(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,从而当b∈(0,1)时f(b)<f(0),所以不存在实数b∈(0,1),符合题意;当a>0时,令有x=0或,又要按根大于零,小于零和等于零分类讨论;对各种情况求函数f(x)x∈(-1,b]的最大值,使其最大值恰为f(b),分别求得a的取值范围,然而将所得范围求并即得所求的范围;若求得的a的取值范围为空则不存在,否则存在.
试题解析:(1)当时,,
则,化简得(x>-1) 2分
列表如下:x (-1,0) 0 (0,1) 1 (1,+) + 0 - 0 + f(x) 增 极大值 减 极小值 增
∴函数f(x)在(-1,0),(1,+∞)上单调递增,在(0,1)上单调递减,且f(0)=0,, 4分
∴函数y=f(x)在x=1处取到极小值为,
在x=0处取到极大值为0; 5分
(2)由题意
(1)当a≤0时,函数f(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,
此时,不存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b); 7分
(2)当a>0时,令有x=0或,
(ⅰ)当即时,函数f(x)在
科目:高中数学 来源: 题型:解答题
已知函数,其中a,b∈R
(1)当a=3,b=-1时,求函数f(x)的最小值;
(2)若曲线y=f(x)在点(e,f(e))处的切线方程为2x-3y-e=0(e=2.71828 为自然对数的底数),求a,b的值;
(3)当a>0,且a为常数时,若函数h(x)=x[f(x)+lnx]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数().
(1)当时,求的图象在处的切线方程;
(2)若函数在上有两个零点,求实数的取值范围;
(3)若函数的图象与轴有两个不同的交点,且,求证:(其中是的导函数).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ex,a,bR,且a>0.
⑴若a=2,b=1,求函数f(x)的极值;
⑵设g(x)=a(x-1)ex-f(x).
①当a=1时,对任意x (0,+∞),都有g(x)≥1成立,求b的最大值;
②设g′(x)为g(x)的导函数.若存在x>1,使g(x)+g′(x)=0成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数:f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1
(1)y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com