已知且,数列满足,,(),令,
⑴求证: 是等比数列;
⑵求数列的通项公式;
⑶若,求的前项和.
(1)详见解析;(2)当时,;当时,;
(3).
解析试题分析:(1)根据等比数列的定义,只需证明是一个非零常数,∵=,∴是等比数列;
(2)由(1)可知,联想到是常数),可利用构造等比数列求,∴两边同时除以,得,然后讨论是否相等,当时,是等差数列,解得;当时,是等比数列,
(3)当时,,通项公式是等差数列乘以等比数列,可利用错位相减法求和.
试题解析:(1),∴是以为首项,为公比的等比数列 3分;
(2)由(1)可得,∴,
①当时,两边同时除以,可得,∴是等差数列,
6分
②当时,两边同时除以,可得,设,,
,∴是以首项为,公比为的等比数列,
,∴. 10分
(3)因为,由⑵可得
14分.
考点:1、等比数列定义;2、构造法求数列通项公式;3、错位相减法求数列前项和.
科目:高中数学 来源: 题型:解答题
已知二次函数同时满足:
①不等式的解集有且只有一个元素;
②在定义域内存在,使得不等式成立.
数列的通项公式为.
(1)求函数的表达式;
(2)求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列的前n项和为,点在直线上.数列{bn}满足,前9项和为153.
(Ⅰ)求数列、的通项公式;
(Ⅱ)设,数列的前n和为,求使不等式对一切都成立的最大正整数k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com