精英家教网 > 高中数学 > 题目详情

【题目】要得到函数y=2cosxsin(x+ )﹣ 的图象,只需将y=sinx的图象(
A.先向左平移 个单位长度,再将所有点的横坐标缩短为原来的 倍(纵坐标不变)
B.先向左平移 个单位长度,再将所有点的横坐标缩短为原来的2倍(纵坐标不变)
C.先将所有点的横坐标缩短为原来的2倍(纵坐标不变),再向左平移 个单位长度
D.先将所有点的横坐标缩短为原来的 倍(纵坐标不变),再向左平移 个单位长度

【答案】A
【解析】解:∵函数y=2cosxsin(x+ )﹣ =2cosx(sinx +cosx )﹣ = sin2x+ =sin(2+ ),
∴把y=sinx的图象先向左平移 个单位长度可得y=sin(x+ )的图象,
再将所有点的横坐标缩短为原来的 倍(纵坐标不变),可得y=sin(2x+ )的图象,
故选:A.
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】用分层抽样的方法从某校学生中抽取一个容量为60的样本,其中高二年级抽取20人,高三年级抽取25人,已知该校高一年级共有800人,则该校学生总数为人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C经过A(0,1),B(3,4),C(6,1)三点.
(1)求圆C的方程;
(2)若圆C与直线x﹣y+a=0交于A,B两点,且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学老师对本校2013届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取20名学生的成绩进行分析,分数用茎叶图记录如图所示(部分数据丢失),得到的频率分布表如下:

分数段(分)

[50,70]

[70,90]

[90,110]

[110,130]

[130,150]

合计

频数

b

频率

a

0.25


(1)表中a,b的值及分数在[90,100)范围内的学生,并估计这次考试全校学生数学成绩及格率(分数在[90,150]范围为及格);
(2)从大于等于110分的学生随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式共有__________种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)已知2sinx=sin( ﹣x),求 的值;
(2)求函数f(x)=ln(sinx﹣ )+ 的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四边形ABCD中, =(3,2), =(x,y), =(﹣2,﹣3)
(1)若 ,试求x与y满足的关系式;
(2)满足(1)同时又有 ,求x,y的值及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥的底面为菱形,且 .

(Ⅰ)求证:平面平面

(Ⅱ)二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

同步练习册答案