精英家教网 > 高中数学 > 题目详情
如右图,简单组合体ABCDPE,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)若N为线段PB的中点,求证:EN⊥平面PDB;
(2)若,求平面PBE与平面ABCD所成的锐二面角的大小.
(1)见解析;(2)45°.
本试题主要考查了下年垂直的判定和二面角的求解。第一问中
要证线面垂直,利用线面垂直的判定定理可以得到。第二问中,利用,以点D为坐标原点,以AD所在的直线为x轴建立空间直角坐标系为平面PBE的法向量.
为平面ABCD的法向量,利用向量的夹角公式得到结论
解:(1)证法1:连结AC与BD交于点F,连结NF,
∵F为BD的中点,∴NF∥PD且NF=PD.
又EC∥PD,且EC=PD,(2分)
∴NF∥EC,且NF=EC,∴四边形NFCE为平行四边形,
∴NE∥FC.(4分)
∵DB⊥AC,PD⊥平面ABCD,AC?面ABCD,∴AC⊥PD.
又PD∩BD=D,∴AC⊥面PBD,∴NE⊥面PDB.(6分)
证法2:以点D为坐标原点,以AD所在的直线为x轴建立空间直角坐标系如图所示:设该简单组合体的底面边长为1,PD=a,

则B(1,1,0),C(0,1,0),P(0,0,a),E(0,1,),N(),
=(,-,0),=(1,1,-a),=(1,1,0).
·×1-×1-a×0=0,
·×1-×1+0×0=0,
∴EN⊥PB,EN⊥DB.
∵PB、DB?面PDB,且PB∩DB=B,∴NE⊥面PDB.(6分)
(2)解法1:连结DN,由(1)知NE⊥面PDB,∴DN⊥NE.
,DB=AD,∴PD=DB,∴DN⊥PB,∴为平面PBE的法向量.
设AD=1,则N(),∴=().
为平面ABCD的法向量,=(0,0,),(10分)
设平面PBE与平面ABCD所成的二面角为θ,则cosθ=
∴θ=45°,即平面PBE与平面ABCD所成的锐二面角为45°.(12分)
解法2:延长PE与DC的延长线交于点G,连结GB,
则GB为平面PBE与平面ABCD的交线.(8分)

∵PD=2EC,∴CD=CG=CB,
∴D、B、G在以C为圆心、以BC为半径的圆上,
∴DB⊥BG.(9分)
∵PD⊥平面ABCD,BG?面ABCD,
∴PD⊥BG,且PD∩DB=D,∴BG⊥面PDB.
∵PB?面PDB,∴BG⊥PB,
∴∠PBD为平面PBE与平面ABCD所成的锐二面角的平面角.(10分)
Rt△PDB中,∵PD=DB,
∴∠PBD=45°,即平面PBE与平面ABCD所成的锐二面角为45°.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,己知平行四边形ABCD中,∠ BAD = 600,AB=6, AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG。
(I)求证:直线CE//平面ABF;
(II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值. 
(Ⅲ)若直线AF与平面 ABCD所成角为,求证:FG⊥平面ABCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是矩形,,且侧面是正三角形,平面平面

(Ⅰ)求证:
(Ⅱ)在棱上是否存在一点,使得二面角的大小为45°.若存在,试求的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中, AB=1,
∠ABC=60.
(1)证明:
(2)求二面角A——B的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱中,点分别是的中点,平面.已知
(Ⅰ)证明:平面
(Ⅱ)求异面直线所成的角;
(Ⅲ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.
(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在阳光下将一个球放在水平面上,球的影子伸到距球与地面接触点处,同一时刻,一个长,一端接触地面且与地面垂直的竹竿的影子长为,则该球的半径等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个命题:
①过平面外一点,作与该平面成角的直线一定有无穷多条。
②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;
③对确定的两条异面直线,过空间任意一点有且只有一个平面与这两条异面直线都平行;
④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等;
其中正确的命题序号为                          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,底面ABCD是菱形,平面ABCD,E是PC的中点,F是AB的中点。
(1)求证:BE//平面PDF;
(2)求证:平面平面PAB;
(3)求平面PAB与平面PCD所成的锐二面角的大小。

查看答案和解析>>

同步练习册答案