分析 由条件利用同角三角函数的基本关系,化简所给的式子,可得结果.
解答 解:(1)∵tanα=3,∴$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=2.
(2)∵tanα=3,∴$\frac{1}{si{n}^{2}α-sinαcosα-2co{s}^{2}α}$=$\frac{{sin}^{2}α{+cos}^{2}α}{{sin}^{2}α-sinαcosα-{2cos}^{2}α}$=$\frac{{tan}^{2}α+1}{{tan}^{2}α-tanα-2}$=$\frac{5}{2}$.
点评 本题主要考查同角三角函数的基本关系,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com