精英家教网 > 高中数学 > 题目详情
9.设tanα=3,计算:
(1)$\frac{sinα+cosα}{sinα-cosα}$;
(2)$\frac{1}{si{n}^{2}α-sinαcosα-2co{s}^{2}α}$.

分析 由条件利用同角三角函数的基本关系,化简所给的式子,可得结果.

解答 解:(1)∵tanα=3,∴$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=2.
(2)∵tanα=3,∴$\frac{1}{si{n}^{2}α-sinαcosα-2co{s}^{2}α}$=$\frac{{sin}^{2}α{+cos}^{2}α}{{sin}^{2}α-sinαcosα-{2cos}^{2}α}$=$\frac{{tan}^{2}α+1}{{tan}^{2}α-tanα-2}$=$\frac{5}{2}$.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=1+cos$\frac{ωπ}{3}$x,其中ω的值是抛掷一枚均匀的骰子所得的点数,则函数f(x)在区间[0,4]上有5个以下或6个以上(不含5个和6个)函数值为1的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R
(1)若f(1)=0,求函数的最大值
(2)令g(x)=f(x)-(ax-1),求函数g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC的顶点坐标分别为A(4,6),B(-2,2),C(6,-2).
(1)求△ABC的平行于边AB的中位线所在直线方程;
(2)求AB边上的高所在直线方程;
(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.至少用两种方法解不等式|x-1|>4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,已知过抛物线x2=2py(p>0)的焦点F的直线l与抛物线相交于A,B两点
(1)若A(x1,3)到焦点F的距离为4,求抛物线的方程;
(2)若抛物线方程为x2=4y,在A,B两点处的切线相交于点M,若点M的横坐标为2,求△ABM的外接圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x|,x∈[-1,1],求定义在R上的一个周期为2的函数g(x),使x∈(-1,-1]时,g(x)=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=sin($\frac{1}{2}$x+φ)(0<φ<$\frac{π}{2}$),y=f(x)图象的一条对称轴是直线x=$\frac{π}{4}$.
(1)求φ
(2)求函数f(x)图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若实数x,y满足x2+y2=4,则$\frac{xy}{x+y+4}$的取值范围是$[2\sqrt{3}\;-4,\;\;1+\frac{{\sqrt{2}}}{2}]$.

查看答案和解析>>

同步练习册答案