【题目】已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)的图形是圆.
(1)求t的取值范围;
(2)求圆的面积取最大值时t的值;
(3)若点P(3,4t2)恒在所给圆内,求t的取值范围.
【答案】(1)-<t<1;(2)t=;(3)0<t<.
【解析】
(1)先化圆的标准方程,再根据半径大于零得不等式,解得t的取值范围;(2)根据半径最大时面积最大,转化为求半径最大值,再根据二次函数性质求最大值取法即得结果;(3)根据条件列不等式,解得结果.
(1)方程即(x-t-3)2+(y+1-4t2)2=-7t2+6t+1,
∴r2=-7t2+6t+1>0,∴-<t<1.
(2)∵r=,
∴当t=∈(-)时,rmax=.
故当t=时,圆的面积最大.
(3)当且仅当32+(4t2)2-2(t+3)×3+2(1-4t2)×4t2+16t4+9<0时,点P在圆内,
∴8t2-6t<0即0<t<.
科目:高中数学 来源: 题型:
【题目】班上有四位同学申请A,B,C三所大学的自主招生,若每位同学只能申请其中一所大学,且申请其中任何一所大学是等可能的.
(1)求恰有2人申请A大学或B大学的概率;
(2)求申请C大学的人数X的分布列与数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC= AD=1,CD= .
(1)求证:平面PQB⊥平面PAD;
(2)若M为棱PC的中点,求异面直线AP与BM所成角的余弦值;
(3)若二面角M﹣BQ﹣C大小为30°,求QM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)判断函数在的单调性.(不需要证明);
(2)探究是否存在实数,使得函数为奇函数?若存在,求出的值;若不存在,请说明理由;
(3)在(2)的条件下,解不等式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且满足不等式22a+1>25a﹣2.
(1)求实数a的取值范围;
(2)求不等式loga(3x+1)<loga(7﹣5x);
(3)若函数y=loga(2x﹣1)在区间[1,3]有最小值为﹣2,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点.
(1)求椭圆的标准方程;
(2)已知椭圆的左焦点为,左、右顶点分别为,经过点的直线与椭圆交于两点,记与的面积分别为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车的推广给消费者带来全新消费体验,迅速赢得广大消费者的青睐,然而,同时也暴露出管理、停放、服务等方面的问题,为了了解公众对共享单车的态度(提倡或不提倡),某调查小组随机地对不同年龄段50人进行调查,将调查情况整理如下表:
并且,年龄在和的人中持“提倡”态度的人数分别为5和3,现从这两个年龄段中随机抽取2人征求意见.
(Ⅰ)求年龄在中被抽到的2人都持“提倡”态度的概率;
(Ⅱ)求年龄在中被抽到的2人至少1人持“提倡”态度的概率.
【答案】(1);(2).
【解析】试题分析:(1)年龄在[20,25)中共有6人,其中持“提倡”态度的人数为5,其中抽两人,基本事件总数n=15,被抽到的2人都持“提倡”态度包含的基本事件个数m=10,由此能求出年龄在[20,25)中被抽到的2人都持“提倡”态度的概率.(2)年龄在[40,45)中共有5人,其中持“提倡”态度的人数为3,其中抽两人,基本事件总数n′=10,年龄在[40,45)中被抽到的2人至少1人持“提倡”态度包含的基本事件个数m′=9,由此能求出年龄在[40,45)中被抽到的2人至少1人持“提倡”态度的概率.
解析:
(1)设在中的6人持“提倡”态度的为, , , , ,持“不提倡”态度的为.
总的基本事件有(),(),(),(),(),(),(),(),(),(),(),(),(),(),().共15个,其中两人都持“提倡”态度的有10个,
所以P==
(2)设在中的5人持“提倡”态度的为, , ,持“不提倡”态度的为, .
总的基本事件有(),(),(),(),(),(),(),(),(),(),共10个,其中两人都持“不提倡”态度的只有()一种,所以P==
【题型】解答题
【结束】
22
【题目】以平面直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,直线的参数方程为(为参数),若与交于两点.
(Ⅰ)求圆的直角坐标方程;
(Ⅱ)设,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com