精英家教网 > 高中数学 > 题目详情

学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128dm2 ,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空白面积最小?

当版心高为,宽为时,海报四周空白面积最小

解析试题分析:
首先设出高,根据面积可用高将宽表示出来,然后设出空白面积,用高和宽将其表示出来,同时注意高的范围.而后利用导数法判断单调性,可得最值.
试题解析:
设版心的高为,则版心的宽为.
此时四周空白面积为
求导数得:
,解得(舍去)
于是宽为
时,;当时,
因此,x=16是函数的极小值点,也是最小值点。
所以当版心高为,宽为时,能使四周空白面积最小。
答:当版心高为,宽为时,海报四周空白面积最小。
考点:导数法求最值;实际应用问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为常数.
(1)若,求函数上的值域;(为自然对数的底数,
(2)若函数上为单调减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若x=3是的极值点,求[1,a]上的最小值和最大值;
(2)若时是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程恰有两个不同的实根,求实数的值;
(3)数列满足,求的整数部分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128dm2 ,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸才能
使四周空白面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2+2x+kln x,其中k≠0.
(1)当k>0时,判断f(x)在(0,+∞)上的单调性;
(2)讨论f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是二次函数,方程有两个相等的实数根,且
(1)求的表达式;
(2)若直线的图象与两坐标轴围成的图形面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知常数,函数.
(1)讨论在区间上的单调性;
(2)若存在两个极值点,且,求的取值范围.

查看答案和解析>>

同步练习册答案