精英家教网 > 高中数学 > 题目详情
19.解答下列问题
(1)计算(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{-\frac{1}{3}}$+$\root{4}{(3-π)^{4}}$的值;
(2)已知2a=5b=100,求$\frac{a+b}{ab}$ 的值.

分析 (1)利用指数幂的运算性质即可得出;
(2)利用指数幂与对数的运算性质即可得出.

解答 解:(1)原式=1+${2}^{-3×(-\frac{1}{3})}$+π-3=π.
(2)∵2a=5b=100,
∴a=$\frac{2}{lg2}$,b=$\frac{2}{lg5}$,
∴$\frac{a+b}{ab}$=$\frac{1}{b}+\frac{1}{a}$=$\frac{lg2}{2}+\frac{lg5}{2}$=$\frac{1}{2}$.

点评 本题考查了指数幂与对数的运算性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设f(x)是定义在(0,+∞)上的增函数,且对任意x,y∈(0,+∞),都有f(xy)=f(x)+f(y).
若f(3)=1,f(a)>f(a-1)+2,则a的取值范围(1,$\frac{9}{8}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,角A,B,C的对边分别为a,b,c,cos2$\frac{A}{2}$=$\frac{b+c}{2c}$,则△ABC的形状一定是(  )
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{{2^x}}\end{array}}\right.\begin{array}{l}{(x≤0)}\\{(x>0)}\end{array}$,则满足f(x)=4的x的取值是2或$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若f(x)=ax2+(2+a)x+1是偶函数,则f(x)的递增区间为(  )
A.(-∞,0)B.[0,+∞)C.(-∞,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若二次函数y=ax2+bx+c(ac≠0)的图象的顶点坐标为$(-\frac{b}{2a},-\frac{1}{4a})$,与x轴的交点P,Q位于y轴的两侧,以线段PQ为直径的圆与y轴交于M(0,-4),则点(b,c)所在曲线为(  )
A.B.椭圆C.双曲线D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=A(sin\frac{x}{2}cosφ+cos\frac{x}{2}sinφ)(A>0,0<φ<\frac{π}{2})$的最大值是2,且f(0)=1.
(Ⅰ)求φ的值;
(Ⅱ)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,若a=2,f(2A)=$\sqrt{3}$,2bsinC=$\sqrt{2}$c.求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x、y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$则目标函数$z=\frac{y+2}{x-5}$的最大值为(  )
A.3B.4C.-3D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:
(1)3-2+$({2\frac{7}{9}})^{\frac{1}{2}}$-${(\sqrt{2}-1)}^{0}$;
(2)${5}^{l{og}_{5}9}$+$\frac{1}{2}$log232-log3(log28)

查看答案和解析>>

同步练习册答案