精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别是,且离心率为,点为椭圆上的动点,面积最大值为.

1)求椭圆的标准方程;

2是椭圆上的动点,且直线经过定点,问在轴上是否存在定点,使得若存在,请求出定点,若不存在,请说明理由.

【答案】1;(2)存在,.

【解析】

1)由离心率为面积可求出的值,从而求出椭圆的标准方程;

(2)假设存在满足题意的定点,设,因为,则直线斜率和为零,所以有,通过化简可以得出的关系,从而判断是否存在定点.

1面积最大值为:,又,解得:.即:,所以方程为:.

(2)假设存在满足题意的定点,设

设直线的方程为,.

消去,得.

由直线过椭圆内一点,故恒成立,

由求根公式得:

,可得直线斜率和为零.

.所以

存在定点,当斜率不存在时定点也符合题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱锥中,底面是等边三角形,且分别是的中点.

(1)证明:平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节过后,甲、乙、丙三人谈论到有关部电影的情况.

甲说:我没有看过电影,但是有部电影我们三个都看过;

乙说:三部电影中有部电影我们三人中只有一人看过;

丙说:我和甲看的电影有部相同,有部不同.

假如他们都说的是真话,则由此可判断三部电影中乙看过的部数是(

A.B.C.D.部或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三角形的三个顶点的坐标分别为,则该三角形的重心(三边中线交点)的坐标为.类比这个结论,连接四面体的一个顶点及其对面三角形重心的线段称为四面体的中线,四面体的四条中线交于一点,该点称为四面体的重心.若四面体的四个顶点的空间坐标分别为,则该四面体的重心的坐标为( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的两个内角.下列六个条件中,的充分必要条件的个数是 ( )

.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像过点,且在处取得极值.

(1)若对任意恒成立,求实数的取值范围;

(2)当,试讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设奇函数f (x )的定义域为R , , xf (x)=, f (x )在区间上的表达式为

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高。这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等。设由椭圆 所围成的平面图形绕 轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案