【题目】在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形.
(1)求椭圆C的方程;
(2)假设直线l:与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围.
【答案】(1);(2)①;②.
【解析】
(1)根据椭圆的几何性质可得到a2,b2;
(2)联立直线和椭圆,利用弦长公式可求得弦长AB,利用点到直线的距离公式求得原点到直线l的距离,从而可求得三角形面积,再用单调性求最值可得值域.
(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以,
又由右准线方程为,得到,
解得,所以
所以,椭圆的方程为
(2)①设,而,则,
∵ , ∴
因为点都在椭圆上,所以
,将下式两边同时乘以再减去上式,解得,
所以
②由原点到直线的距离为,得,化简得:
联立直线的方程与椭圆的方程:,得
设,则,且
,
所以
的面积
,
因为在为单调减函数,
并且当时,,当时,,
所以的面积的范围为.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数),
(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换得到曲线,曲线任一点为,求点直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一张半径为3的圆形铁皮中裁剪出一块扇形铁皮(如图1阴影部分),并卷成一个深度为米的圆锥筒(如图2).若所裁剪的扇形铁皮的圆心角为.
(1)求圆锥筒的容积;
(2)在(1)中的圆锥内有一个底面圆半径为的内接圆柱(如图3),求内接圆柱侧面积最大时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
(1)求在上的最大值和最小值;
(2)把的图像上的所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图像向左平移个单位长度,得到函数的图像,求的单调减区间
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在四面体中,是边长为2的等边三角形,为直角三角形,其中为直角顶点,.分别是线段上的动点,且四边形为平行四边形.
(1)求证:平面,平面;
(2)试探究当二面角从0°增加到90°的过程中,线段在平面上的投影所扫过的平面区域的面积;
(3)设,且为等腰三角形,当为何值时,多面体的体积恰好为?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com