精英家教网 > 高中数学 > 题目详情
已知函数y=a1-x(a>0,且a≠1)的图象过定点A,若点A在一次函数y=mx+n的图象上,其中m,n>0,则
1
m
+
1
n
的最小值为
4
4
分析:依题意,可求得定点A的坐标,代入y=mx+n,利用基本不等式即可求得答案.
解答:解:∵y=a1-x(a>0,且a≠1)的图象过定点A(1,1),
∴m+n=1,又m,n>0,
1
m
+
1
n
=(
1
m
+
1
n
)(m+n)≥1+1+2
m
n
n
m
=4.
故答案为:4.
点评:本题考查基本不等式,求得m+n=1是关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线
x
m
+
y
n
=1
(m>0,n>0)上,则m+n的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-1=0(m>0,n>0)上,则
1
m
+
4
n
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A与点B(m,0)、C(0,n)(m≠n,mn≠0)在同一直线上,则
1
m
+
1
n
的值为
 

查看答案和解析>>

科目:高中数学 来源:2010年福建省泉州五中高考数学模拟试卷2(文科)(解析版) 题型:填空题

已知函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线(m>0,n>0)上,则m+n的最小值为   

查看答案和解析>>

同步练习册答案
关 闭