精英家教网 > 高中数学 > 题目详情

【题目】某高级中学共有900名学生,现用分层抽样的方法从该校学 生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为

【答案】300
【解析】解:∵用分层抽样的方法从某校学生中抽取一个容量为45的样本, 其中高一年级抽20人,高三年级抽10人,
∴高二年级要抽取45﹣20﹣10=15,
∵高级中学共有900名学生,
∴每个个体被抽到的概率是 =
∴该校高二年级学生人数为 =300,
所以答案是:300.
【考点精析】解答此题的关键在于理解分层抽样的相关知识,掌握先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)设max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn+2=2an , 等差数列{bn}的前n项和为Tn , 且T2=S2=b3
(1)求数列{bn}的通项公式;
(2)令 ,求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B均为锐角,则cosA>sinB是△ABC为钝角三角形的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台推出一档游戏类综艺节目,选手面对1﹣5号五扇大门,依次按响门上的门铃,门铃会播放一段音乐,选手需正确回答这首歌的名字,回答正确,大门打开,并获得相应的家庭梦想基金,回答每一扇门后,选手可自由选择带着目前的奖金离开,还是继续挑战后面的门以获得更多的梦想基金,但是一旦回答错误,游戏结束并将之前获得的所有梦想基金清零;整个游戏过程中,选手有一次求助机会,选手可以询问亲友团成员以获得正确答案. 1﹣5号门对应的家庭梦想基金依次为3000元、6000元、8000元、12000元、24000元(以上基金金额为打开大门后的累积金额,如第三扇大门打开,选手可获基金总金额为8000元);设某选手正确回答每一扇门的歌曲名字的概率为pi(i=1,2,…,5),且pi= (i=1,2,…,5),亲友团正确回答每一扇门的歌曲名字的概率均为 ,该选手正确回答每一扇门的歌名后选择继续挑战后面的门的概率均为
(1)求选手在第三扇门使用求助且最终获得12000元家庭梦想基金的概率;
(2)若选手在整个游戏过程中不使用求助,且获得的家庭梦想基金数额为X(元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.
(1)请将l表示成关于α的函数l=f(α);
(2)问当α为何值时l最小?并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设|θ|< ,n为正整数,数列{an}的通项公式an=sin tannθ,其前n项和为Sn
(1)求证:当n为偶函数时,an=0;当n为奇函数时,an=(﹣1) tannθ;
(2)求证:对任何正整数n,S2n= sin2θ[1+(﹣1)n+1tan2nθ].

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0 , 2 )(x0 )是抛物线C上一点.圆M与线段MF相交于点A,且被直线x= 截得的弦长为 |MA|.若 =2,则|AF|等于( )
A.
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当a=1时,求函数f(x)的单调区间;
(2)若﹣1<x<1时,均有f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案