精英家教网 > 高中数学 > 题目详情

四棱锥中,底面为平行四边形,侧面底面.已知

(Ⅰ)证明

(Ⅱ)求直线与平面所成角的正弦值.

 

【答案】

(Ⅰ)见解析.(Ⅱ)

【解析】

试题分析:(Ⅰ)通过作,垂足为,连结,根据侧面底面,得底面.应用三垂线定理,得.(Ⅱ)立体几何中的角的计算,一般有两种思路,一是直接法,通过“一作,二证,三计算”等步骤,计算角;二是“间接法”,如利用图形与其投影的面积关系,确定角.本题首先设到平面的距离为,根据,求得.进一步确定,将角用反正弦函数表示.

试题解析:(Ⅰ)作,垂足为,连结,由侧面底面,得底面

因为,所以

,故为等腰直角三角形,

由三垂线定理,得

(Ⅱ)由(Ⅰ)知,依题设

,由,得

的面积

连结,得的面积

到平面的距离为,由于,得

解得

与平面所成角为,则

所以,直线与平面所成的角为

考点:垂直关系、平行关系,角的计算.

 

练习册系列答案
相关习题

科目:高中数学 来源:黑龙江省牡丹江一中10-11学年高一下学期期末考试数学(理) 题型:解答题

(本小题满分12分)如图,四棱锥中,底面为平行四边形,,底面.
(1)证明:;
(2)若求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2014届山西省高二10月月考国际班数学试卷(解析版) 题型:解答题

(本小题12分)

如图,四棱锥中,底面为平行四边形 底面

(I)证明:

(II)设,求棱锥的高.

 

查看答案和解析>>

科目:高中数学 来源:2013届山东冠县武训高中高二下学期模块考试理科数学试卷(解析版) 题型:解答题

如图,四棱锥中,底面为平行四边形,⊥底面.

(1)证明:平面平面

(2)若二面角,求与平面所成角的正弦值。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省五校高三第三次联考理科数学(解析版) 题型:解答题

如图,在四棱锥中,底面为平行四边形,底面,E在棱上,  (Ⅰ) 当时,求证: 平面;  (Ⅱ) 当二面角的大小为时,求直线与平面所成角的正弦值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三上学期2月月考理科数学试卷 题型:解答题

如图,四棱锥中,底面为平行四边形,⊥底面.

 

 

(1)证明:平面平面

(2)若二面角,求与平面所成角的正弦值。

 

查看答案和解析>>

同步练习册答案