精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=sin(2x+φ)x∈R,φ∈(0,π),若图象关于点($\frac{π}{3}$,0)对称,则φ=$\frac{π}{3}$.

分析 由题意可得sin(2•$\frac{π}{3}$+φ)=0,再结合φ∈(0,π),求得φ 的值.

解答 解:∵函数f(x)=sin(2x+φ)x∈R,φ∈(0,π),若图象关于点($\frac{π}{3}$,0)对称,
∴sin(2•$\frac{π}{3}$+φ)=0,再结合φ∈(0,π),可得φ=$\frac{π}{3}$,
故答案为:$\frac{π}{3}$.

点评 本题主要考查余弦函数的图象,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.不等式$\frac{5-x}{x-2}$<0的解集是{x|x>5或x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\left\{\begin{array}{l}{x=\frac{3at}{1+{t}^{2}}}\\{y=\frac{3a{t}^{2}}{1+{t}^{2}}}\end{array}\right.$求在t=2处的切线方程和法线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{x}{x+3}$,数列{an}满足a1=1,an+1=f(an).
(1)证明:{$\frac{1}{{a}_{n}}$+$\frac{1}{2}$}是等比数列,并求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{{3}^{n}}{2}$anan+1,Sn=b1+b2+…+bn,求证:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.变量x,y满足条件$\left\{\begin{array}{l}{x-y+1≤0}\\{y≤1}\\{x≥-1}\end{array}\right.$,则(x-1)2+y2的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某农副产品从5月1日起开始上市,通过市场调查,得到该农副产品种植成本Q(单位:元/kg)与上市时间t(单位:天)的数据如表:
时间天50110250
种植成本150108150
(1)根据上表数据,从下列函数模型中选出一个适当的函数来描述农副产品种植成本Q与上市时间t的变化关系,要求简述你选择的理由并求出该函数表达式.参考函数:Q=at+b,Q=at2+bt+c;Q=abt;Q=alogbt(以上均有a≠0)
(2)利用你选出的函数模型,求该农副产品最低种植成本及相应的上市时间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=log3x,则f(-9)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x,y满足约束条件:$\left\{\begin{array}{l}{y≤x+1}\\{y≤2}\\{2x+y≤7}\end{array}\right.$,则z=x+y的最大值与最小值分别为(  )
A.$\frac{7}{2}$,3B.5,$\frac{7}{2}$C.5,3D.4,3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线的斜率为$\sqrt{2}$,且右焦点与抛物线${y^2}=4\sqrt{3}x$的焦点重合,则该双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{2}=1$B.$\frac{x^2}{3}-\frac{y^2}{2}=1$C.$\frac{x^2}{2}-{y^2}=1$D.${x^2}-\frac{y^2}{2}=1$

查看答案和解析>>

同步练习册答案