精英家教网 > 高中数学 > 题目详情

【题目】关于函数f(x)4sin(2x), (x∈R)有下列命题:

①yf(x)是以为最小正周期的周期函数;

② yf(x)可改写为y4cos(2x)

③yf(x)的图象关于(0)对称;

④ yf(x)的图象关于直线x=-对称;

其中正确的序号为 .

【答案】2,3

【解析】

试题分析:最小正周期T=,不正确;②f(x)4sin(2x)=4cos-2x-=4cos2x+-=4cos2x-),正确;③fx=4sin2x+)的对称点满足(x0),则2x+=kπ,得x=k∈Z,(-0)满足条件,正确;④fx=4sin2x+)的对称直线满足2x+=k+πx=,故x=-不满足,不正确。综上正确的命题有②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

1)证明函数f ( x )的图象关于轴对称;

2)判断上的单调性,并用定义加以证明;

3)当x12]时函数f (x )的最大值为,求此时a的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校高一数学考试后,对分(含分)以上的成绩进行统计,其频率分布直方图如图所示,分数在分的学生人数为人,

(1)求这所学校分数在分的学生人数;

(2)请根据频率发布直方图估计这所学校学生分数在分的学生的平均成绩;

(3)为进“步了解学生的学习情况,按分层抽样方法从分数在分和分的学生中抽出人,从抽出的学生中选出人分别做问卷和问卷,求分的学生做问卷分的学生做问卷的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn=
(1)求证:数列{ }为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正数数列的前项和为,且满足;在数列中,

(1)求数列的通项公式;

(2)设,数列的前项和为. 若对任意,存在实数,使恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求满足的值;

(2)若函数是定义在上的奇函数.

①存在,使得不等式有解,求实数的取值范围;

②若函数满足,若对任意,不等式恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段进行分组.已知测试分数均为整数,现用每组区间的中点值代替该组中的每个数据,则得到体育成绩的折线图如下:

(1)若体育成绩大于或等于70分的学生为“体育良好”,已知该校高一年级有1000名学生,试估计该校高一年级学生“体育良好”的人数;

(2)用样本估计总体的思想,试估计该校高一年级学生达标测试的平均分;

(3)假设甲、乙、丙三人的体育成绩分别为,且,当三人的体育成绩方差最小时,写出的所有可能取值(不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(I)判断并证明函数的奇偶性;

(II)判断并证明函数上的单调性;

(III)是否存在这样的负实数,使对一切恒成立,若存在,试求出取值的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆ab>0的离心率,过点的直线与原点的距离为

1求椭圆的方程

2已知定点,若直线与椭圆交于CD两点是否存在k的值,使以CD为直径的圆过E点?请说明理由

查看答案和解析>>

同步练习册答案