分析 比较x2-2与(x-x2)+1的大小,从而化简f(x)=$\left\{\begin{array}{l}{{x}^{2}-2,-1≤x≤\frac{3}{2}}\\{x-{x}^{2},x<-1或x>\frac{3}{2}}\end{array}\right.$,作其图象,结合图象解得.
解答 解:∵x2-2-(x-x2)-1=2x2-x-3=(2x-3)(x+1),
∴f(x)=(x2-2)?(x-x2)=$\left\{\begin{array}{l}{{x}^{2}-2,-1≤x≤\frac{3}{2}}\\{x-{x}^{2},x<-1或x>\frac{3}{2}}\end{array}\right.$,
作函数y=f(x)的图象如下,
,
∵-1-(-1)2=-2,$\frac{3}{2}$-($\frac{3}{2}$)2=-$\frac{3}{4}$,
(-1)2-2=-1,02-2=-2,($\frac{3}{2}$)2-2=$\frac{1}{4}$;
结合图象可知,
当-2<K≤-1时,函数y=f(x)与函数y=K的图象有三个交点,
故答案为:(-2,-1].
点评 本题考查了学生对新定义的接受与应用能力及分段函数的应用,同时考查了数形结合的思想.
科目:高中数学 来源: 题型:选择题
A. | (-1,0) | B. | (-1,0)∪(0,1] | C. | (0,1) | D. | (0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{3\sqrt{2}}}{2}$ | B. | $\frac{{3\sqrt{3}}}{4}$ | C. | $\frac{9}{8}$ | D. | $\frac{{3\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ${0.2^α}>{(\frac{1}{2})^α}>{2^α}$ | B. | ${2^α}>{0.2^α}>{(\frac{1}{2})^α}$ | C. | ${(\frac{1}{2})^α}>{0.2^α}>{2^α}$ | D. | ${2^α}>{(\frac{1}{2})^α}>{0.2^α}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 恰有1个黑球与恰有2个黑球 | B. | 至少有一个黑球与都是黑球 | ||
C. | 至少有一个黑球与至少有1个红球 | D. | 至多有一个黑球与都是黑球 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\stackrel{∧}{y}$=3x-1 | B. | $\stackrel{∧}{y}$=$\frac{7}{8}$x+$\frac{3}{2}$ | C. | $\stackrel{∧}{y}$=x+2 | D. | $\stackrel{∧}{y}$=$\frac{1}{3}$x+$\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (4,6) | B. | (5,6) | C. | (6,+∞) | D. | (-∞,4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com