精英家教网 > 高中数学 > 题目详情

已知正项数列的前项和为,且满足:.
(1)求的通项公式;
(2)设,求的前项和
(3)在(2)的条件下,对任意都成立,求整数的最大值.

(1);(2);(3)整数的最大值为7.

解析试题分析:(1)用代替等式中的,得到,两式相减并化简得到,进而依题意可得,进而由等差数列的定义及通项公式可得数列的通项公式;(2)由(1)中求出的通项公式得到,从而根据裂项求和的方法可得到;(3)对任意都成立,等价于,只需要求出数列的最小项的值即可,这时可用的方法来探讨数列的单调性,从而确定,最后求解不等式,从而可确定整数的最大值.
试题解析:∵

①-②得

化简得


是以1为首项,2为公差的等差数列

(2)

(3)由(2)知

∴数列是递增数列


∴整数的最大值是.
考点:1.数列的前项和与通项公式的关系;2.等差数列的通项公式;3.裂项求和的方法;4.数列最小项的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列为等比数列,其前n项和为,且满足成等差数列.
(1)求数列的通项公式;
(2)已知,记,求数列前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列的各项均为正数,且成等差数列,成等比数列.
(1)求数列的通项公式;
(2)已知,记
,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列中,已知
(1)求数列的通项公式;
(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的公差为,且.若设是从开始的前项数列的和,即,如此下去,其中数列是从第开始到第)项为止的数列的和,即
(1)若数列,试找出一组满足条件的,使得:
(2)试证明对于数列,一定可通过适当的划分,使所得的数列中的各数都为平方数;
(3)若等差数列.试探索该数列中是否存在无穷整数数列
,使得为等比数列,如存在,就求出数列;如不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列中,是常数,),且成公比不为的等比数列.
(1)求的值;
(2)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前n项和为Sn,已知,且对一切都成立.
(1)若λ=1,求数列的通项公式;
(2)求λ的值,使数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列,其前项和满足的等比中项..
(1)求数列的通项公式;
(2)设,求数列的前99项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的公差d=1,前n项和为Sn.
(1)若1,a1a3成等比数列,求a1
(2)若S5a1a9,求a1的取值范围.

查看答案和解析>>

同步练习册答案