精英家教网 > 高中数学 > 题目详情

设f(x)是定义在R上的偶函数,它在[0,+∞)上为增函数,且f(数学公式)>0,则不等式f(数学公式)>0的解集为


  1. A.
    (0,数学公式
  2. B.
    (2,+∞)
  3. C.
    数学公式,1)∪(2,+∞)
  4. D.
    (0,数学公式)∪(2,+∞)
D
分析:根据题意,由f()>0可得,从而可得不等式f()>0的解集.
解答:∵f(x)是定义在R上的偶函数,∴f(-x)=f(x)=f(|x|),
又f(x)在[0,+∞)上为增函数,且f()>0,
∴由f()>0,可得
,即

故选D.
点评:本题考查函数奇偶性与单调性的综合,难点在于对偶函数f(x)=f(|x|)的深刻理解与应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、设f(x)是定义在R上的奇函数,且f(3)+f(-2)=2,则f(2)-f(3)=
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x+2x-1,则f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且f(1)=0,当x>0时,有f(x)>xf′(x)恒成立,则不等式xf(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)满足f(1-x)=f(x),且f( 
1
2
 )=2
,则f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为(  )
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步练习册答案