精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知直线为参数),曲线为参数),以原点为极点, 轴的正半轴为极轴建立坐标系.

(1)写出直线的普通方程与曲线的极坐标方程;

(2)设直线与曲线交于 两点,求的面积.

【答案】(1)见解析;(2) .

【解析】试题分析:(1)将直线的参数方程消去参数,得到普通方程,先将曲线C的参数方程化为普通方程,再根据化为极坐标方程;(2)由点到直线的距离公式,求出圆心(1,2)到直线的距离,由弦长公式求出,再算出面积。

试题解析:(1)将直线消去参数

故直线的普通方程为.

将曲线化为普通方程为

代入上式,

可得曲线的极坐标方程为.

(2)由(1)可知,圆心到直线的距离为.

为圆半径).

所以.

故所求的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(  )

A. 若命题都是真命题,则命题“”为真命题

B. 命题“”的否定是“,

C. 命题:“若,则”的否命题为“若,则

D. ”是“”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理是类比推理的( )

A. 两条直线平行,同旁内角互补,如果是两条平行直线的同旁内角,则

B. 由平面三角形的性质,推测空间四边形的性质

C. 某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.

D. 一切偶数都能被2整除,是偶数,所以能被2整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过椭圆的右顶点、下顶点和上顶点

(1)求圆的标准方程;

(2)直线经过点且与垂直,是直线上的动点,过点作圆的切线,切点分别为,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖励金额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:,其中哪个模型能符合公司的要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列函数的奇偶性:

1f(x)x1

2f(x)x33xx[44)

3f(x)|x2||x2|

4f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数,单位是,其中x表示鲑鱼的耗氧量的单位数.

1)当一条鲑鱼的耗氧量是8100个单位时,它的游速是多少?

2)计算一条鲑鱼静止时耗氧量的单位数.

3)若鲑鱼A的游速大于鲑鱼B的游速,问这两条鲑鱼谁的耗氧量较大?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:

经计算: ,其中分别为试验数据中的温度和死亡株数, .

(1)若用线性回归模型,求关于的回归方程(结果精确到);

(2)若用非线性回归模型求得关于的回归方程为,且相关指数为.

(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;

(ii)用拟合效果好的模型预测温度为时该批紫甘薯死亡株数(结果取整数).

附:对于一组数据 …… ,其回归直线的斜率和截距的最小二乘估计分别为: ;相关指数为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.


46.6

563

6.8

289.8

1.6

1469

108.8

表中==

(Ⅰ)根据散点图判断,,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);

(Ⅱ)根据()的判断结果及表中数据,建立y关于x的回归方程;

(III)已知这种产品的年利zx,y的关系为,根据()的结果回答下列问题:

(Ⅰ)当年宣传费时,年销售量及年利润的预报值时多少?

(Ⅱ)当年宣传费为何值时,年利润的预报值最大?

附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

同步练习册答案