【题目】如图,设椭圆的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且0,若过 A,Q,F2三点的圆恰好与直线相切,过定点 M(0,2)的直线与椭圆C交于G,H两点(点G在点M,H之间).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线的斜率,在x轴上是否存在点P(,0),使得以PG,PH为邻边的平行四边形是菱形?如果存在,求出的取值范围;如果不存在,请说明理由;(Ⅲ)若实数满足,求的取值范围.
【答案】(1);(2);(3).
【解析】
试题(1)利用向量确定F1为F2Q中点,设Q的坐标为(-3c,0),因为AQ⊥AF2,所以b2=3c×c=3c2,a2=4c×c=4c2,再由直线与圆相切得 解得c=1,利用椭圆基本量之间的关系求b;(2)假设存在,设方程,联立方程组,消元后由判别式大于0可得出,又四边形为菱形时,对角线互相垂直,利用向量处理比较简单,,化简得(x1+x2)-2m+k2(x1+x2)+4k=0,再由 代入化简得:,
解得,利用均值不等式范围;(3) 斜率存在时设直线方程,联立消元,,再由,进行坐标运算,代入化简,分离k与,利用k的范围求,注意验证斜率不存在时情况.
试题解析:(1)因为0,所以F1为F2Q中点
设Q的坐标为(-3c,0),因为AQ⊥AF2,所以b2=3c×c=3c2,a2=4c×c=4c2,
且过A,Q,F2三点的圆的圆心为F1(-c,0),半径为2c.
因为该圆与直线L相切,所以 解得c=1,所以a=2,故所求椭圆方程为.(2)设L1的方程为y=kx+2(k>0)由得(3+4k2)x2+16kx+4=0,
由△>0,得 所以k>1/2,设G(x1,y1),H(x2,y2),则所以(x1-m,y1)+(x2-m,y2)=(x1+x2-2m,y1+y2)=(x1+x2-2m,k(x1+x2)+4)(x2-x1,y2-y1)=(x2-x1,k(x2-x1)),由于菱形对角线互相垂直,因此所以(x2-x1)[(x1+x2)-2m]+k(x2-x1)[k(x1+x2)+4]=0,故(x2-x1)[(x1+x2)-2m+k2(x1+x2)+4k]=0因为k>0,所以x2-x1≠0所以(x1+x2)-2m+k2(x1+x2)+4k=0,即(1+k2)(x1+x2)+4k-2m=0,所以
,解得, 因为k>0,所以故存在满足题意的点P且m的取值范围是.(3)①当直线L1斜率存在时,设直线L1方程为y=kx+2,代入椭圆方程,得(3+4k2)x2+16kx+4=0 , 由△>0,得,设G(x1,y1),H(x2,y2), 则,又,所以(x1,y1-2)=λ(x2,y2-2), 所以x1=λx2, 所以,∴ ∴,整理得 ,因为, 所以 ,解得又0<λ<1,所以 .②当直线L1斜率不存在时,直线L1的方程为x=0,
span> ,,,所以 .综上所述, .
科目:高中数学 来源: 题型:
【题目】某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g)作为质量指标值.由检测结果得到如下频率分布直方图.
分组 | 频数 | 频率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合计 | 100 | 1 |
(1)求图中的值;
(2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间和内为合格品,重量在区间内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该零件重量的概率分布.若这批零件共件,现有两种销售方案:方案一:不再检测其他零件,整批零件除对已检测到的不合格品进行回收处理,其余零件均按150元/件售出;方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150元/件售出,优质品按200元/件售出.仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如题所示:扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条三条商业街道PQ、QR、RP,要求街道PQ与AB垂直,街道PR与AC垂直,直线PQ表示第三条街道。
(1)如果P位于弧BC的中点,求三条街道的总长度;
(2)由于环境的原因,三条街道PQ、PR、QR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳的质量随时间(单位:年)的衰变规律满足(表示碳原有的质量),则经过年后,碳的质量变为原来的________;经过测定,良渚古城遗址文物样本中碳的质量是原来的至,据此推测良渚古城存在的时期距今约在________年到年之间.(参考数据:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设长方体中,,,是的中点,点在线段上.
(1)试在线段上确定点的位置,使得异面直线与所成角为,并请说明你的理由;
(2)在满足(1)的条件下,求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为2的正方体中,点是对角线上的点(点与、不重合),则下列结论正确的个数为( )
①存在点,使得平面平面;
②存在点,使得平面;
③若的面积为,则;
④若、分别是在平面与平面的正投影的面积,则存在点,使得.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.
(1)证明:平面.
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线:(),直线:,与交于P、Q两点,为P关于y轴的对称点,直线与y轴交于点;
(1)若点是的一个焦点,求的渐近线方程;
(2)若,点P的坐标为,且,求k的值;
(3)若,求n关于b的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com