精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+(a-1)+5,若f(x)为偶函数,求a的值.
考点:函数奇偶性的性质
专题:计算题,函数的性质及应用
分析:依据f(x)=f(-x),即可求出a的值.
解答: 解:∵f(x)=x2+(a-1)x+5为偶函数,
∴f(x)=f(-x),
即x2+(a-1)x+5=x2-(a-1)x+5,
即(a-1)x=0,
解得a=1.
点评:本题考查函数奇偶性,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设平面内直线l1上的点的集合为L1,直线l2上的点的集合为L2,试用集合的运算表示l1,l2的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

若19x+1、92x+74中的最大值是非负数,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
1-i
i
化简是(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x
x+1
(x≠-1).
(1)求f(x)的单调区间;
(2)证明对任意x>y>0,都有f(x+y)<f(x)+f(y).

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系中,三角形ABC顶点分别为A(a,0),B(0,b),C(0,c),点D(d,0)在线段OA上(异于端点),设a,b,c,d均为非零实数,直线BD交AC于点E,则OE所在的直线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

半径为1的三个球A,B,C平放在平面α上,且两两相切,其上放置一半径为2的球D,则由四个球心A,B,C,D构成一个新四面体,求该四面体外接球O的表面积
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是偶函数,当x>0时,f(x)=(
1
2
)x
-1,则当x<0时,f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果f(x+y)=f(x)•f(y),且f(1)=1,则
f(2)
f(1)
+
f(4)
f(3)
+…+
f(2010)
f(2009)
=(  )
A、1005B、1006
C、2008D、2010

查看答案和解析>>

同步练习册答案