分析 由椭圆C1:$\frac{{x}^{2}}{m+2}-\frac{{y}^{2}}{n}$=1与双曲线C2:$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}$=1有相同的焦点,可得m>0,n<0.因此m+2-(-n)=m-n,解得n=-1.于是椭圆C1的离心率e12=1-$\frac{1}{m+2}$,利用不等式的性质和e<1即可得出.
解答 解:在椭圆C1:$\frac{{x}^{2}}{m+2}-\frac{{y}^{2}}{n}$=1中,a12=m+2,b12=-n,c12=m+2+n,e12=$\frac{m+2+n}{m+2}$=1+$\frac{n}{m+2}$.
∵曲线C2:$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}$=1,∴a22=m,b22=-n,c22=m-n.由题意可得m+2+n=m-n,则n=-1.
∴e12=1-$\frac{1}{m+2}$.由m>0,得m+2>2.
∴0<$\frac{1}{m+2}$<$\frac{1}{2}$,-$\frac{1}{m+2}$>-$\frac{1}{2}$,∴1-$\frac{1}{m+2}$>$\frac{1}{2}$,即e12>$\frac{1}{2}$.
而0<e1<1,∴$\frac{\sqrt{2}}{2}$<e1<1.
故答案为:$\frac{\sqrt{2}}{2}$<e1<1.
点评 本题考查了椭圆与双曲线的标准方程及其性质、不等式的性质,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(1,\frac{{\sqrt{2e}}}{2e}+1)$ | B. | $(1,\frac{1}{e}+1)$ | C. | $(0,\frac{1}{2e}+1)$ | D. | $(\frac{1}{e},1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | $\sqrt{7}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | 2 | C. | 4 | D. | 2或4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com