精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ ]时f(x)的值域;
(2)在△ABC中,角A、B、C所对的边为a,b,c,且角C为锐角,SABC= ,c=2,f(C+ )= .求a,b的值.

【答案】
(1)解:f(x)=sin(2x+ )﹣cos2x= sin2x+ cos2x﹣ (2cos2x﹣1)﹣

= sin2x﹣

f(x)的最小正周期π,

x∈[ ],2x∈[ ],

f(x)的值域[﹣ ]


(2)解:f(x)= sin2x﹣

f(C+ )= sin2(C+ )﹣ =

∴sin(2C+ )= ,cos2C= ,角C为锐角,

C=

S= ,SABC=

ab=4

由余弦定理可知:c2=a2+b2﹣2abcosC,

a2+b2=16,

解得b=2,a=2 或b=2 ,a=2


【解析】(1)角和的正弦公式及二倍角公式,化简求得f(x)═ sin2x﹣ ,根据正弦函数的图象和性质,求出周期和f(x)的值域;

(2)f(C+ )= ,求得C= ,由三角形的面积公式求得ab=4 ,余弦定理求得a2+b2=16,联立求得a、b的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,函数f(x)=2cosxsin(x﹣A)+sinA(x∈R)在x= 处取得最大值.
(1)当 时,求函数f(x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,则( )

A.f(x)的一个对称中心为
B.f(x)的图象关于直线 对称
C.f(x)在 上是增函数
D.f(x)的周期为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足3a8=5a15 , 且 ,Sn为其前n项和,则数列{Sn}的最大项为(
A.
B.S24
C.S25
D.S26

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , 过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:

选考物理、化学、生物的科目数

1

2

3

人数

5

25

20

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则函数f(3x﹣2)的定义域为( )
A.[ ]
B.[﹣1, ]
C.[﹣3,1]
D.[ ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(2+x)=f(x),且在[﹣3,﹣2]上是减函数,若A、B是锐角三角形ABC的两个内角,则下列各式一定成立的是( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示.

(1)求函数 的解析式,并写出 的最小正周期;
(2)令 ,若在 内,方程 有且仅有两解,求 的取值范围.

查看答案和解析>>

同步练习册答案