【题目】如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.
求证:(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
【答案】(1)详见解析;(2)详见解析.
【解析】
试题分析:(1) 由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC,根据线面平行的判定定理得证;(2)由CC1⊥平面ABC,可得AC⊥CC1,又因为AC⊥BC,由线面垂直的判定定理可得AC⊥平面BCC1B1,进而可得B1C⊥AC,又BC1⊥B1C,证得BC1⊥平面B1AC,故命题成立.
试题解析:
(1)由题意知,E为B1C的中点,
又D为AB1的中点,因此DE∥AC.
又因为DE平面AA1C1C,AC平面AA1C1C,
所以DE∥平面AA1C1C.
(2)因为棱柱ABC-A1B1C1是直三棱柱,
所以CC1⊥平面ABC.
因为AC平面ABC,所以AC⊥CC1.
又因为AC⊥BC,CC1平面BCC1B1,
BC平面BCC1B1,BC∩CC1=C,
所以AC⊥平面BCC1B1,
又因为BC1平面BCC1B1,所以B1C⊥AC.
因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.
因为AC,B1C平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.
又因为AB1平面B1AC,所以BC1⊥AB1.
科目:高中数学 来源: 题型:
【题目】如图所示,椭圆: ()的离心率为,左焦点为,右焦点为,短轴两个端点、,与轴不垂直的直线与椭圆交于不同的两点、,记直线、的斜率分别为、,且.
(1)求椭圆的方程;
(2)求证直线与轴相交于定点,并求出定点坐标;
(3)当弦的中点落在内(包括边界)时,求直线的斜率的取值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程为 (α为参数),以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程
(2)若直线l的极坐标方程为ρ(sinθ+cosθ)=1,求直线l被曲线C截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知圆圆心为,过点且斜率为的直线与圆相交于不同的两点、.
()求的取值范围;
()是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】奥地利遗传学家孟德尔1856年用豌豆作实验时,他选择了两种性状不同的豌豆,一种是子叶颜色为黄色,种子性状为圆形,茎的高度为长茎,另一种是子叶颜色为绿色,种子性状为皱皮,茎的高度为短茎。我们把纯黄色的豌豆种子的两个特征记作,把纯绿色的豌豆的种子的两个特征记作,实验杂交第一代收获的豌豆记作,第二代收获的豌豆出现了三种特征分别为,,,请问,孟德尔豌豆实验第二代收获的有特征的豌豆数量占总收成的( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在框图中,设x=2,并在输入框中输入n=4;ai=i(i=0,1,2,3,4).则此程序执行后输出的S值为( )
A. 26 B. 49 C. 52 D. 98
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆中心在坐标原点,焦点在坐标轴上,且经过三点.
(1)求椭圆的方程;
(2)在直线上任取一点,连接,分别与椭圆交于两点,判断直线是否过定点?若是,求出该定点.若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com