精英家教网 > 高中数学 > 题目详情

已知与曲线C:x2+y2-2x-2y+1=0相切的直线l交x轴、y轴于A、B两点,O为原点,且|OA|=a,|OB|=b,(a>2,b>2)

(1)求证:曲线C与直线l相切的条件是(a-2)(b-2)=2;

(2)求线段AB中点的轨迹方程;

(3)求△AOB面积的最小值.

答案:
解析:

  (1)因为

  又由

  (2)解法一:由(1)知上为减函数,又因

  等价于为减函数,由上式推得:

  

  解法二:由(1)知

  又由题设条件得:

  即:

  整理得

  上式对一切


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知与曲线C:x2+y2-2x-2y+1=0相切的直线l分别交x轴、y轴于A(a,0)、B(0,b)两点(a>2,b>2),O为原点.
(1)求证:(a-2)(b-2)=2;
(2)求线段AB中点的轨迹方程;
(3)求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知与曲线C:x2+y2-2x-2y+1=0相切的直线l与x轴、y轴的正半轴交于两点A、B;O为原点,|OA|=a,|OB|=b(a>2,b>2).
(1)求证:曲线C与直线l相切的条件是(a-2)(b-2)=2;
(2)求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知与曲线C:x2+y2-2x-2y+1=0相切的直线l分别交x、y轴于A、B两点,O为原点,|OA|=a,|OB|=b(a>2,b>2).
(1)求证:若曲线C与直线l相切,则有(a-2)(b-2)=2;
(2)求线段AB中点的轨迹方程;
(3)求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知与曲线C:x2+y2-2x-2y+1=0相切的直线l交x,y的正半轴与A、B两点,O为原点,|OA|=a,|OB|=b,(a>2,b>2).
(1)求线段AB中点的轨迹方程;
(2)求ab的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知与曲线C:x2+y2-2x-2y+1=0相切的直线l交x轴、y轴于A、B两点,O为原点,且|OA|=a,|OB|=b,(a>2,b>2).
(1)求证:曲线C与直线l相切的条件是(a-2)(b-2)=2;
(2)求线段AB中点的轨迹方程.

查看答案和解析>>

同步练习册答案