精英家教网 > 高中数学 > 题目详情
(1)已知π<α<2π,cos(α-7π)=,

求sin(3π+α)与tan(α-)的值;

(2)已知2+sinAcosA=5cos2A,求tanA的值;

(3)已知sinα+cosα=,且α∈(0,π),求sin3α-cos3α的值.

解:(1)∵cos(α-7π)=-cosα=,

∴cosα=.又π<α<2π,

<α<2π,sinα=-,

sin(3π+α)=-sinα=,tan(α-)=

(2)将已知式化为2sin2A+2cos2A+sinA·cosA=5cos2A,

∵cosA≠0,

∴2tan2A+tanA-3=0,tanA=1或tanA=-.

(3)sinαcosα==,

∵α∈(0,π),

∴sinα>0,cosα<0,

∴sinα-cosα>0,

∴sinα-cosα=,

∴sin3α-cos3α=×(1)=.

思想方法小结:形如asinα+bcosα和asin2α+bsinαcosα+ccos2α的式子分别称为关于sinα、cosα的一次齐次式和二次齐次式,对涉及它们的三角式的变换常有如上的整体代入方法可供使用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知P={x|x2-3x+2=0},Q={x|ax-2=0},Q⊆P,求a的值.
(2)已知A={x|2≤x≤3},B={x|m+1≤x≤2m+5},B⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知{an}是公差为-2的等差数列,a7是a3与a9的等比中项,求该数列前10项和S10
(2)若数列{bn}满足b1=
2
3
,bn+1=
2bn
3bn+2
,试求b2013的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知幂函数y=xm-2(x∈N)的图象与x,y轴都无交点,且关于y轴对称,求函数解析式.
(2)已知函数y=
415-2x-x2
.求函数的单调区间和奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=x+2+
1
x
,x∈(0,+∞)
,求函数f(x)的最小值;
(2)设x,y为正数,且x+y=1,求
1
x
+
4
y
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=2+log4x(1≤x≤16),求函数g(x)=[f(x)]2+f(x2)的值域.
(2)若直线y=4a与y=|ax-2|(a>0且a≠1)的图象有两个公共点,求a的取值范围.

查看答案和解析>>

同步练习册答案