精英家教网 > 高中数学 > 题目详情
精英家教网如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为
π
4
π
6
.过A、B分别作两平面交线的垂线,垂足为A′、B′,则AB:A′B′=
 
分析:如图,连接AB'和A'B,设AB=a,作出两个线面角,在直角三角形中用a表示出线段A'B'的长度,即可得出所求的比值.
解答:精英家教网解:如图,连接AB'和A'B,设AB=a,可得AB与平面α所成的角为∠BAB′=
π
4

Rt△BAB′中有AB′=
2
2
a
,同理可得AB与平面β所成的角为∠ABA′=
π
6

所以A′A=
1
2
a
,因此在Rt△AA′B′中A′B′=
(
2
2
a)
2
-(
1
2
a)
2
=
1
2
a

所以AB:A′B′=a:
1
2
a=2:1
点评:本题考查线面角及其相关几何运算,考查了在二面角与线面角背景下求线段长度的能力,属于立体几何知识的综合运用题,对空间想像能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知等腰△ABC的底边BC=3,顶角为120°,D是BC边上一点,且BD=1.把△ADC沿AD折起,使得平面CAD⊥平面ABD,连接BC形成三棱锥C-ABD.
(Ⅰ) ①求证:AC⊥平面ABD;②求三棱锥C-ABD的体积;
(Ⅱ) 求AC与平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,平面α⊥平面β,A∈α,B∈β,AB与平面α、β所成的角分别为
π
4
π
6
,过A、B分别作两平面交线的垂线,垂足为A′、B′,若AB=12,求A′B′的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图(1)直线l∥AB,且与CA,CB分别相交于点E,F,EF与AB间的距离是d,点P是线段EF上任意一点,Q是线段AB上任意一点,则|PQ|的最小值等于d.类比上述结论我们可以得到:在图(2)中,平面α∥平面ABC,且与DA,DB,DC分别相交于点E,F,G,平面α与平面ABC间的距离是m,
a,b分别是平面α与平面ABC内的任意一条直线,则a,b间距离的最小值是m.
或P,Q分别是平面α与平面ABC内的任意一点,则P,Q间距离的最小值是m.
a,b分别是平面α与平面ABC内的任意一条直线,则a,b间距离的最小值是m.
或P,Q分别是平面α与平面ABC内的任意一点,则P,Q间距离的最小值是m.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)如图1,在梯形ABCD中,BC∥DA,BE⊥DA,EA=EB=BC=2,DE=1,将四边形DEBC沿BE折起,使平面DEBC垂直平面ABE,如图2,连结AD,AC.设M是AB上的动点.
(Ⅰ)若M为AB中点,求证:ME∥平面ADC;
(Ⅱ)若AM=
13
AB
,求三棱锥M-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,平面平面,点EFO分别为线段PAPBAC的中点,点G是线段CO的中点,

求证:   (Ⅰ)平面

(Ⅱ)∥平面

查看答案和解析>>

同步练习册答案