精英家教网 > 高中数学 > 题目详情
(本题12分)如图所示,在直四棱柱中, ,点是棱上一点.

(1)求证:
(2)求证:
证明:见解析;(2)证明:见解析。
(I)证明B1D1//BD即可.
(2)可以通过证明:即可.
证明:由直四棱柱,得,

所以是平行四边形,
所以      …………………(3分)
,,
所以 ------------------6分
(2)求证:
证明:因为,
     ----------------9分)
又因为,且

,所以         ……………………(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,底面为菱形的四棱锥P-ABCD中,∠ABC=60°,AC="1," PA="2," PB=PD=,点M是PD的中点.

(Ⅰ)证明:PA⊥平面ABCD;
(Ⅱ)若AN为PD边的高线,求二面角M-AC-N的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分9分)
如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=3,BC=4,AB=5,点D是AB的中点.

(1)求证AC⊥BC1
(2)求证AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图5,已知直角梯形所在的平面垂直于平面

.  
(1)在直线上是否存在一点,使得
平面?请证明你的结论;
(2)求平面与平面所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如图所示,在四面体中,已知
,,,是线段上一点,
,点在线段上,且

⑴证明
⑵求二面角的平面角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,侧棱长为的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40
过A作截面AEF,则截面△AEF周长的最小值为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是(    )
A.48B.18C.24D.36

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为三条不同的直线,为一个平面,下列命题中正确的个数是  (   )
①若,则相交
②若
③若||||,则
④若||,则||
A.1B.2 C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线a∥平面α,直线b在平面α内,则a与b的位置关系为                          

查看答案和解析>>

同步练习册答案