精英家教网 > 高中数学 > 题目详情

【题目】已知.

I)若,求曲线在点处的切线方程.

II)若,求函数的单调区间.

III)若不等式恒成立,求实数的取值范围.

【答案】(Ⅰ) (Ⅱ)答案见解析;(Ⅲ)

【解析】试题分析:(1)由题意易得 ,根据点斜式得到曲线在点处的切线方程;(2),对分类讨论明确相应不等式的解集,即可得到函数的单调区间;(3)不等式恒成立等价于上恒成立变量分离即上恒成立。转求的最大值即可.

试题解析:

I

,所有切点坐标为

∴所求切线方程为

II

,得

)当时,由,得

,得

此时的单调递减区间为

单调递增区间为

)当时,由,得

,得

此时的单调递减区间为

单调递增区间为

综上:当时, 的单调递减区间为,单调递增区间为

时, 的单调递减区间为

单调递增区间为

III)依题意,不等式恒成立,

等价于上恒成立

可得上恒成立

,得 (舍),

时,

时,

变化时, 变化情况如下表:

单调递增

单调递减

∴当时, 取得最大值,

的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x 的定义域为(0,1](a为实数).
(1)当a=1时,求函数yf(x)的值域;
(2)求函数yf(x)在区间(0,1]上的最大值及最小值,并求出当函数f(x)取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1),求函数的极大值;

(2)时,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏.

(1)求甲拿到礼物的概率;

(2)设表示甲参加游戏的轮数,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的数据表:

爱好

不爱好

合计

20

30

50

10

20

30

合计

30

50

80

(1)将此样本的频率估计为总体的概率,随机调查了本校的3名学生.设这3人中爱好羽毛球运动的人数为,求的分布列和期望值;

(2)根据表中数据,能否有充分证据判定爱好羽毛球运动与性别有关联?若有,有多大把握?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,公园有一块边长为2的等边ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,DAB上,EAC.

1)设ADxx≥1),EDy,求用x表示y的函数关系式;

2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求曲线 在点处的切线方程;

(2)当时,讨论函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中, 为正方形, 为菱形, .

(1)求证:平面⊥平面

(2)若中点,∠是二面角的平面角,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知, .

1)求函数的增区间;

2)若函数有两个零点,求实数的取值范围,并说明理由;

3)设正实数 满足,当时,求证:对任意的两个正实数 总有.

(参考求导公式: )

查看答案和解析>>

同步练习册答案