精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1-BCDE.

(Ⅰ)证明:CD⊥平面A1OC;

(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为36,求a的值.

【答案】(1)见解析;(2)6.

【解析】

试题分析:(1)在折叠前,根据平几知识得BEAC.从而折叠后BEA1OBEOC再根据线面垂直判定定理得结果(2)由面面垂直性质定理得A1O⊥平面BCDE再根据锥体体积公式得关于a的方程,解得a的值.

试题解析:(1)证明:在题图①中,因为ABBCADaEAD的中点,∠BAD,所以BEAC.

即在题图②中,BEA1OBEOC

从而BE⊥平面A1OC

CDBE,所以CD⊥平面A1OC.

(2)由已知,平面A1BE⊥平面BCDE

且平面A1BE平面BCDEBE

又由(1),A1OBE,所以A1O⊥平面BCDE

A1O是四棱锥A1BCDE的高.

由题图①知,A1OABa,平行四边形BCDE的面积SBC·ABa2.

从而四棱锥A1BCDE的体积为V×S×A1O×a2×aa3,由a3=36,得a=6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:

支持

保留

不支持

岁以下

岁以上(含岁)

(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;

(2)在持“不支持”态度的人中,用分层抽样的方法抽取人看成一个总体,从这人中任意选取人,求岁以下人数的分布列和期望;

(3)在接受调查的人中,有人给这项活动打出的分数如下: ,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选)某中学高一年级有20个班,每班50人;高二年级有30个班,每班45.甲就读于高一,乙就读于高二.学校计划从这两个年级中共抽取235人进行视力调查,下列说法中正确的有(

A.应该采用分层随机抽样法

B.高一、高二年级应分别抽取100人和135

C.乙被抽到的可能性比甲大

D.该问题中的总体是高一、高二年级的全体学生的视力

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面平面,,

分别为棱的中点.

(1)求证:

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年1月1日,我国全面实行二孩政策,某机构进行了街头调查,在所有参与调查的青年男女中,持“响应”“犹豫”和“不响应”态度的人数如下表所示:

响应

犹豫

不响应

男性青年

500

300

200

女性青年

300

200

300

根据已知条件完成下面的列联表,并判断能否有的把握认为犹豫与否与性别有关?请说明理由.

犹豫

不犹豫

总计

男性青年

女性青年

总计

1800

参考公式:

参考数据:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右顶点分别为,直线与双曲线交于,直线交直线于点.

(1)求点的轨迹方程;

(2)若点的轨迹与矩形的四条边都相切,探究矩形对角线长是否为定值,若是,求出此值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若同时满足下列三个条件:① ,且时,都有 ,且时,都有 则称偏对称函数.现给出下列三个函数: 则其中是偏对称函数的函数个数为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱锥中,MSC的中点,且,底面边长,则正三棱锥的外接球的表面积为_______________.

查看答案和解析>>

同步练习册答案