(本小题满分12分) 已知方程(为实数)有两个不相等的实数根,分别求:
(Ⅰ)若方程的根为一正一负,则求实数的取值范围;
(Ⅱ)若方程的两根都在内,则求实数的取值范围
(Ⅰ);(Ⅱ).
解析试题分析:(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值加上韦达定理的符号就可以了.
(2)利用根与系数的关系以及f(-1),f(1),对称轴在(-1,1)内,确定两个根的取值情况.
解:(Ⅰ)由根与函数图像的关系,则方程的根为一正一负,即,所以实数的取值范围是;
(Ⅱ)由,解之,.
考点:本题主要考查了判断一元二次方程根的情况与判别式△的关系,可以转化为判断方程的根的判别式与0的大小关系。.
点评:解决该试题的关键是能理解一元二次方程的根的正负与判别式韦达定理的关系的运用,以及两个根都在(-1,1)内,结合图像利用端点的函数值,以及判别式,对称轴来得到。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知:函数y=f (x)的定义域为R,且对于任意的a,b∈R,都有f (a+b)=f (a)+f (b),且当x>0时,f (x)<0恒成立.
证明:(1)函数y=f (x)是R上的减函数.
(2)函数y=f (x)是奇函数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题15分)已知函数.
(1)当时,求的单调递增区间;
(2)是否存在,使得对任意的,都有恒成立.若存在,求出的取值范围; 若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com