精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,圆的普通方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)写出圆的参数方程和直线的直角坐标方程;

2)设点上,点Q在上,求的最小值及此时点的直角坐标.

【答案】(1)圆的参数方程:,直线;(2),此时点的坐标为

【解析】

1)整理圆的方程为,即可写出参数方程,利用将直线方程写为直角坐标方程即可;

2)法一:利用参数方程设曲线上的点,利用点到直线距离公式可得,则根据三角函数的性质求处最值,并将代回求得坐标;

法二:为圆心到直线距离减去半径,再利用弦与直线垂直的性质得所在直线为,联立直线与圆的方程即可求得交点的坐标

(1)圆的方程可化为,圆心为,半径为,

∴圆的参数方程为为参数),

直线的极坐标方程可化为,

,∴直线的直角坐标方程为

(2)法一:设曲线上的点,

到直线的距离:

,

时,,

此时点的坐标为,所以,此时点的坐标为

法二:曲线是以为圆心,半径为的圆,

圆心到直线的距离,

所以,

此时直线经过圆心,且与直线垂直,

,所以,所在直线方程为,即,

联立直线和圆的方程,解得,

取得最小值时,点的坐标为,

所以,此时点的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在y轴右侧部分的边界为一个半圆.给出以下命题:

①在太极图中随机取一点,此点取自黑色阴影部分的概率是

②当时,直线与黑色阴影部分有公共点;

③黑色阴影部分中一点,的最大值为2

其中所有正确结论的序号是( )

A.B.C.①③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面为正方形的四棱锥中,平面平面分别为棱的中点.

(1)求证:平面;

(2)若直线所成角的正切值为,求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数有四个零点,则的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,过坐标原点作两条互相垂直的射线与椭圆分别交于两点.

1)证明:当取得最小值时,椭圆的离心率为.

2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,一座小岛距离海岸线上最近的P点的距离是2km,从P点沿海岸正东12km处有一个城镇.假设一个人驾驶的小船的平均速度为,步行的速度为,时间t单位:h表示他从小岛到城镇的时间,x单位:km)表示此人将船停在海岸处距P点的距离.,则(

A.函数为减函数B.

C.时,此人从小岛到城镇花费的时间最少D.时,此人从小岛到城镇花费的时间不超过3h

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线截抛物线所得弦长为.

1)求的值;

2)若直角三角形的三个顶点在抛物线上,且直角顶点的横坐标为1,过点分别作抛物线的切线,两切线相交于点.

①若直线经过点,求点的纵坐标;

②求的最大值及此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上且满足如下条件的函数组成的集合:①对任意的,都有②存在常数使得对任意的,都有.

1)设是否属于?说明理由;

2)若如果存在使得证明:这样的是唯一的;

3)设试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体中,PQ分别是棱的中点.

1)求异面直线所成角的大小;

2)求以PQ四点为四个顶点的四面体的体积.

查看答案和解析>>

同步练习册答案