精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的函数.

1)求单调区间;

2)当时,上有三个零点,求的取值范围.

【答案】1)答案不唯一,具体见解析(2

【解析】

对函数求导可得,,分,三种情况讨论利用导数判断函数的单调性求单调区间即可;

,把函数上有三个零点转化为函数的图象与直线上有三个不同的交点,通过对函数进行求导判断其单调性并求极值,得到关于的不等式,解不等式即可.

由题意知,

时,恒成立,函数的单调增区间为

时由,得;由,得

函数的单调减区间为,单调增区间为

时由,得;由,得

函数的单调减区间为,单调增区间为

综上可知,时,函数的单调增区间为

时函数的单调减区间为,单调增区间为

时函数的单调减区间为,单调增区间为

,则

,令,解得

,;当,

函数上单调递增,在上单调递减,

所以当时,函数有极大值为

,函数有极小值为

使函数上有三个零点,

即直线和函数有三个不同的交点,

单调性,只需满足

,解得

所以实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”逐渐成为人们交流的一种形式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄

(单位:岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(1)若以“年龄45岁为分界点”,由以上统计数据完成下面2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(2)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率.

参考数据:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2,其中nabcd.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在给出的下列命题中,正确的是(

A.是同一平面上的四个点,若,则点必共线

B.若向量是平面上的两个向量,则平面上的任一向量都可以表示为,且表示方法是唯一的

C.已知平面向量满足为等腰三角形

D.已知平面向量满足,且,则是等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求出函数的单调区间及最大值;

2)若,求函数上的最大值的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下列结论正确的个数有(

是函数图像的一条对称轴

是函数图像的一个对称中心

③将函数图像向右平移单位所得图像的解析式为得

④函数在区间内单调递增

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量,满足,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为(

A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为),M为该曲线上的任意一点.

1)当时,求M点的极坐标;

2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为m为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线与曲线C交于MN两点.

(1)求直线l的普通方程和曲线C的直角坐标方程;

(2)求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的个数是( ).

①在中,若,则是等腰三角形;

②在中,若 ,则

③两个向量共线的充要条件是存在实数,使

④等差数列的前项和公式是常数项为0的二次函数.

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案