精英家教网 > 高中数学 > 题目详情
已知p:x2≤x,q:x2-(2a+1)x+a(a+1)≥0.若q是p的必要不充分条件,求实数a是取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:集合,简易逻辑
分析:分别求出两个命题为真时,对应的集合P,Q,根据q是p的必要不充分条件,可得P?Q,进而根据集合真子集的定义,得到实数a是取值范围.
解答: 解:解x2≤x得P=[0,1],
解x2-(2a+1)x+a(a+1)≥0得:(-∞,a]∪[a+1,+∞),
若q是p的必要不充分条件,
则P?Q,
则a≥1,或a+1≤0,
即a≥1,或a≤-1,
故实数a是取值范围是(-∞,-1]∪[1,+∞)
点评:本题考查必要条件,充分条件与充要条件,本题解题的关键是根据条件类型求参数取值范围问题,进一步转化为集合间的关系解决,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设偶函数f(x)的定义域为R,f(x)在区间(-∞,0]上为增函数,则f(-2),f(π),f(3)的大小关系是(  )
A、f(π)>f(-2)>f(3)
B、f(π)>f(3)>f(-2)
C、f(π)<f(-2)<f(3)
D、f(π)<f(3)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|x2-x-2≥0},集合B={x|-2<x<1},则A∩B=(  )
A、{x|-2<x<-1}
B、{x|-2<x≤-1}
C、{x|-2<x<2}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos(x+
π
6
),x∈R.
(1)求f(π)的值;
(2)若cosθ=
4
5
θ∈(-
π
2
,0)
,求f(θ-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x、y满足约束条件
y≤x 
x+y≤1
y≥-1  
,且z=2x+y的最大值和最小值分别为M和m,则M-m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>1,在约束条件
y≥x
y≤ax
x+y≤1
下,目标函数z=x+ay的最大值小于2,则a的取值范围是(  )
A、(1,3)
B、(3,+∞)
C、(
2
+1,+∞)
D、(1,
2
+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|9log3
3
≤log3x+2<log363},函数y=
2log
1
2
(x-2)
-
1
4
的定义域为B.
(1)求∁RA;
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A为圆C:(x+2)2+(y-4)2=8上的动点,O为坐标原点,N为OA的中点.
(1)求动点N轨迹L的方程;
(2)若轨迹L的切线在x轴和y轴上的截距相等,求此切线的方程;
(3)从轨迹L外一点P(x1,y1)向该轨迹引一条切线,切点为M,且有|PM|=|PO|,求使得|PM|取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点M(-2,0),N(2,0),若以点M、N为焦点的双曲线C过直线x+y=1上的点Q,求实轴最长的双曲线C的方程.

查看答案和解析>>

同步练习册答案