精英家教网 > 高中数学 > 题目详情

【题目】设函数fx=ax3+bx2+cx+dabcdR)满足:xR都有fx+fx=0,且x=1时,fx)取极小值

(1)f(x)的解析式;

(2)当x∈[﹣1,1]时,证明:函数图象上任意两点处的切线不可能互相垂直:

3)设Fx=|xfx|,证明: 时,

【答案】1 (2)见解析(3)见解析

【解析】解:(1)因为,x∈R,f(﹣x)=﹣f(x)成立,所以:b=d=0,

由:f'(1)=0,得3a+c=0,由:,得

解之得:,c=﹣1从而,函数解析式为:

(2)由于,f'(x)=x2﹣1,

设:任意两数x1,x2∈[﹣1,1]是函数f(x)图象上两点的横坐标,

则这两点的切线的斜率分别是:k1=f'(x1)=x12﹣1,k2=f'(x2)=x22﹣1

又因为:﹣1≤x1≤1,﹣1≤x2≤1,所以,k1≤0,k2≤0,得:k1k2≥0知:k1k2≠﹣1

故,当x∈[﹣1,1]是函数f(x)图象上任意两点的切线不可能垂直)

(3)当:时,x2∈(0,3)且3﹣x2>0此时F(x)=|xf(x)|===

当且仅当:x2=3﹣x2,即,取等号,故;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中

.且点为线段的中点, 现将△沿进行翻折,使得二面角

的大小为,得到图形如图(2)所示,连接,点分别在线段上.

(1)证明:

(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间;

2)是否存在实数,使恒成立,若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]以平面直角坐标系原点为极点,x轴正半轴为极轴,建立极坐标系,两种坐标系中取相同长度单位,已知曲线的参数方程为,( 为参数,且),曲线的极坐标方程为

(1)求的极坐标方程与的直角坐标方程;

(2))若P是上任意一点,过点P的直线于点M,N,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上三个向量 的模均为1,它们相互之间的夹角均为120°.
(1)求证:
(2)若|k |>1 (k∈R),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点A(m,n)、B(2,1)、C(﹣2,3);
(1)求BC边所在直线的方程;
(2)BC边上中线AD的方程为2x﹣3y+6=0,且SABC=7,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的外接圆半径R= ,角A,B,C的对边分别是a,b,c,且 =
(1)求角B和边长b;
(2)求SABC的最大值及取得最大值时的a,c的值,并判断此时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张老师开车上班,有路线①与路线②两条路线可供选择. 路线①:沿途有两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为,若处遇红灯或黄灯,则导致延误时间2分钟;若处遇红灯或黄灯,则导致延误时间3分钟;若两处都遇绿灯,则全程所花时间为20分钟.

路线②:沿途有两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为,若处遇红灯或黄灯,则导致延误时间8分钟;若处遇红灯或黄灯,则导致延误时间5分钟;若两处都遇绿灯,则全程所花时间为15分钟.

(1)若张老师选择路线①,求他20分钟能到校的概率;

(2)为使张老师日常上班途中所花时间较少,你建议张老师选择哪条路线?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一个函数的是(
A. 与y=x+1
B.y=x与 (a>0且a≠1)
C. 与y=x﹣1
D.y=lgx与

查看答案和解析>>

同步练习册答案