精英家教网 > 高中数学 > 题目详情
5.若函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函数,则a=1,使f(x)>3成立的x的取值范围为(0,1).

分析 由函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函数,f(-x)=-f(x)在定义域内恒成立,可得a值,进而解指数不等式可得使f(x)>3成立的x的取值范围.

解答 解:∵函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函数,
则f(-x)=-f(x)在定义域内恒成立,
即$\frac{{2}^{-x}+1}{{2}^{-x}-a}$=$\frac{{2}^{x}+1}{{1-a2}^{x}}$=-$\frac{{2}^{x}+1}{{2}^{x}-a}$,
解得:a=1,
令f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$>3,即1<2x<2,
解得:x∈(0,1),
故答案为:1,(0,1)

点评 本题考查的知识点是函数奇偶性的性质,熟练掌握函数奇偶性的性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知直线l:$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$与抛物线y=x2交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知幂函数y=x3m-7(m∈N)的图象关于y轴对称,且与x轴,y轴均无交点,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:函数f(x)=lg(ax2-6x+a)的定义域为R,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若“p或q”为真,“p且q“为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若a=0.32,b=20.3,c=log0.32,则a,b,c由大到小的关系是b>a>c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共线的非零向量,且$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$.
(1)已知$\overrightarrow{c}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,以$\overrightarrow{a}$,$\overrightarrow{b}$为基底,表示向量$\overrightarrow{c}$;
(2)若4$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,求λ,μ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的体积为10π+40.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow a=(1,2),\overrightarrow b=(-2,y),若\overrightarrow a∥\overrightarrow b,则|3\overrightarrow a+\overrightarrow b|$等于$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点(0,2)且与抛物线y2=mx只有一个公共点的直线共有3条.

查看答案和解析>>

同步练习册答案