【题目】已知函数
(Ⅰ)若函数在其定义域上为单调函数,求的取值范围;
(Ⅱ)若函数的图像在处的切线的斜率为0,,已知求证:
(Ⅲ)在(2)的条件下,试比较与的大小,并说明理由.
【答案】(Ⅰ);(Ⅱ)略;(Ⅲ)<.
【解析】
试题(Ⅰ)利用导数求解单调性,把恒成立转化为最值;(Ⅱ)可用数学归纳法来证明;(Ⅲ)通过放缩法来解决与的大小比较问题.
试题解析:(Ⅰ) ∵f(1)="a-b=0" ∴a=b
∴
∴
要使函数在其定义域上为单调函数,则在定义域(0,+∞)内恒大于等于0或恒小于等于0,
当a=0时,在(0,+∞)内恒成立;
当a>0时,恒成立,则∴
当a<0时,恒成立
∴a的取值范围是:
(Ⅱ)∴a=1 则:
于是
用数学归纳法证明如下:
当n=1时,,不等式成立;
假设当n=k时,不等式成立,即也成立,
当n=k+1时,
所以当n=k+1时不等式成立,
综上得对所有时,都有
(Ⅲ)由(2)得
于是
所以,
累乘得:则
所以
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产万件,需另投入流动成本万元,当年产量小于万件时,(万元);当年产量不小于7万件时,(万元).已知每件产品售价为6元,假若该同学生产的商品当年能全部售完.
(1)写出年利润(万年)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)
(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?
(取).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.
(Ⅰ)求乙投球的命中率;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X为所组成的三位数各位数字之和.
(1)求X是奇数的概率;
(2)求X的概率分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图分别为定义域和值域均为的函数和函数的图象,则下列命题正确的是( )
A.函数恰有个零点B.函数恰有个零点
C.函数恰有个零点D.函数恰有个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)选修4—4,坐标系与参数方程
已知曲线,直线:(为参数).
(I)写出曲线的参数方程,直线的普通方程;
(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的33表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X元.
(1)求概率;
(2)求的概率分布及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com