精英家教网 > 高中数学 > 题目详情
14.设函数f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的两个相邻的对称中心分别为(${\frac{π}{8}$,0),(${\frac{5π}{8}$,0).
(Ⅰ)求f(x)的解析式及其对称轴方程;
(Ⅱ)利用五点法画出函数f(x)在[$\frac{π}{8}$,$\frac{9π}{8}}$]上的简图.

分析 (Ⅰ)由题意可求周期T,利用周期公式可求ω,由$f(\frac{π}{8})=sin({\frac{π}{4}+φ})=0$,结合范围-π<φ<0,可求φ,从而可求f(x)的解析式,由$2x-\frac{π}{4}=\frac{π}{2}+kπ,k∈Z$可解得f(x)对称轴方程.
(Ⅱ)分别求出对应的x值和y值列表,然后描点,再用平滑曲线连接得函数图象.

解答 解:(Ⅰ)∵f(x)的两个相邻的对称中心分别为$({\frac{π}{8},0})$,$({\frac{5π}{8},0})$,
∴${T}=\frac{4π}{8}×2=\frac{π}{2}×2=\frac{2π}{2}=π$,
∴ω=2,
∴f(x)=sin(2x+φ),
∵$f(\frac{π}{8})=sin({\frac{π}{4}+φ})=0$,
∴$\frac{π}{4}+φ=kπ,k∈Z$,
∴$φ=kπ-\frac{π}{4},k∈Z$,
∵-π<φ<0,
∴$φ=-\frac{π}{4}$,
∴$f(x)=sin({2x-\frac{π}{4}})$.…(4分)
由$2x-\frac{π}{4}=\frac{π}{2}+kπ,k∈Z$,得$x=\frac{3π}{8}+\frac{kπ}{2},k∈Z$,
所以f(x)对称轴方程为$x=\frac{3π}{8}+\frac{kπ}{2},k∈Z$,…(6分)
(Ⅱ)列表:

x$\frac{π}{8}$$\frac{3π}{8}$$\frac{5π}{8}$$\frac{7π}{8}$$\frac{9π}{8}$
$2x-\frac{π}{4}$0$\frac{π}{2}$π$\frac{3π}{2}$
f(x)010-10
…(8分)
作图:

…(12分)

点评 本题考查了y=Asin(ωx+φ)型函数的有关概念,考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查利用五点作图法作函数的图象,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一个平面内的三个单位向量,且$\overrightarrow a⊥\overrightarrow b$,则$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)$的取值范围是(  )
A.$[-1,\sqrt{2}]$B.$[-\sqrt{2},\sqrt{2}]$C.$[\sqrt{2}-2,2]$D.$[1-\sqrt{2},1+\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在锐角△ABC中,内角A,B,C的对边分别为a,b,c.且5asinB=3b.
(Ⅰ)求cosA的值;
(Ⅱ)若a=3,b+c=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在同一坐标系中,曲线$\frac{x^2}{16}+\frac{y^2}{9}$=1经过伸缩变换$\left\{\begin{array}{l}{x^'}=\frac{1}{4}x\\{y^'}=\frac{1}{3}y\end{array}$后,得到的曲线的方程是(  )
A.$\frac{{{x^'}^2}}{4}+\frac{{{y^'}^2}}{3}=1$B.$\frac{{{y^'}^2}}{4}+\frac{{{x^'}^2}}{3}=1$C.x'2+y'2=1D.x'2+y'2=12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足2acosC=2b-$\sqrt{3}$c.
(1)求A的大小;
(2)现给出三个条件:①a=2; ②B=45°;③c=$\sqrt{3}$b.试从中选出两个可以确定△ABC的条件,写出你的选择并以此为依据求△ABC的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从5位男同学和4位女同学中选出3位同学分别担任数、语、外三科的科代表,要求选出的3位同学中男女都要有,则不同的选派方案共有(  )
A.210种B.630种C.420种D.840种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,网格纸上小正方体的边长为1,粗实线画出的是某多面体的三视图(第一个为主视图,下面的是俯视图),则该多面体各个面的面积最大值为$3\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在△ABC中,角A、B、C的对边分别为a、b、c,向量$\overrightarrow m$=(b,c-2a),$\overrightarrow n$=(2cosC,1),且|$\overrightarrow m$+$\overrightarrow n$|=|$\overrightarrow m$-$\overrightarrow n$|.
(I)求∠B的大小;
(II)若b=2,求△ABC面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.正棱锥S-ABCD的底面边长为4,高为1,求:
(1)棱锥的侧棱长和斜高;
(2)棱锥的表面积.

查看答案和解析>>

同步练习册答案