精英家教网 > 高中数学 > 题目详情

【题目】袋中混装着9个大小相同的球(编号不同),其中5只白球,4只红球,为了把红球与白球区分开来,采取逐只抽取检查,若恰好经过5次抽取检查,正好把所有白球和红球区分出来了,则这样的抽取方式共有__________种(用数字作答) .

【答案】600

【解析】分析种情况讨论:①次取出的全部为白球;②次取出个红球、个白球次取出红球分别求出每种情况下的取法数目再利用分类计数原理可得结果.

详解根据题意,恰好经过次抽取检查,正好把所有白球和红球区分开来则一共有种请况:①次取出的全部为白球,需要将个白球全排列安排在前次取出种情况.②次取出个红球、个白球,第次取出红球,需要在个红球中取出只白球中取出个,安排在前次取出次取出第只红球种情况共有种不同的抽取方式,故答案为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD= ,M为BC上的一点,且BM= ,MP⊥AP.

(1)求PO的长;
(2)求二面角A﹣PM﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九章算术是我国古代著名数学经典其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示阴影部分为镶嵌在墙体内的部分已知弦尺,弓形高寸,估算该木材镶嵌在墙中的体积约为( )(注:1丈寸,)

A. 600立方寸 B. 610立方寸 C. 620立方寸 D. 633立方寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:

2

3

4

5

6

7

(1)请用相关系数加以说明之间存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).

附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:

,相关系数公式为:.

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且定义域为.

(1)求关于的方程上的解;

(2)若在区间上单调减函数,求实数的取值范围;

(3)若关于的方程上有两个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名师生站成一排照相留念,其中教师1人,男生2人,女生2.

(1)求两名女生相邻而站的概率;

(2)求教师不站中间且女生不站两端的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1),求的值

(2),求的值;

(3)若展开式中所有无理项的二项式系数和,数列是各项都大于1的数组成的数列,试用数学归纳法证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数a使方程sinx+ cosx=a在闭区间[0,2π]上恰有三个解x1 , x2 , x3 , 则x1+x2+x3=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为自然对数的底数).

(1)求函数的极值;

(2)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

同步练习册答案