精英家教网 > 高中数学 > 题目详情
5.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”.其大意为:“有一个走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为(  )
A.48里B.24里C.12里D.6里

分析 由题意可知,每天走的路程里数构成以$\frac{1}{2}$为公比的等比数列,由S6=378求得首项,再由等比数列的通项公式求得该人第五天走的路程.

解答 解:记每天走的路程里数为{an},
由题意知{an}是公比$\frac{1}{2}$的等比数列,
由S6=378,得${S}_{6}=\frac{{a}_{1}(1-\frac{1}{{2}^{6}})}{1-\frac{1}{2}}$=378,
解得:a1=192,
∴${a}_{5}=192×\frac{1}{{2}^{4}}$=12(里).
故选:C.

点评 本题考查等比数列的通项公式的运用,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|log2x>0},B={x|x<2},则(  )
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,∠BAC=60°,E,F分别是AP,AC的中点,点D在棱AB上,且AD=AC.求证:
(1)EF∥平面PBC;
(2)DF⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+2y-3≥0\\ 2x+y-6≤0\end{array}\right.$,若2x-y≥m恒成立,则实数m的取值范围是(-∞,-$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|x2-6x+5≤0},B={x|x<a+1}.若A∩B≠∅,则a的取值范围为(  )
A.(0,+∞)B.[0,+∞)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和Sn,若an+1+(-1)nan=n,则S40=420.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若集合A={x|1≤2x≤16},B={x|log3(x2-2x)>1},则A∩B等于(  )
A.(3,4]B.[3,4]C.(-∞,0)∪(0,4]D.(-∞,-1)∪(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x+alnx与g(x)=3-$\frac{b}{x}$的图象在点(1,1)处有相同的切线.
(1)若函数y=2(x+m)与y=f(x)的图象有两个交点,求实数m的取值范围;
(2)设函数F(x)=3(x-$\frac{m}{2}$)+$\frac{m}{2}$g(x)-2f(x)有两个极值点x1,x2,且x1<x2,求证:F(x2)<x2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要得到函数y=sin2x的图象,只要将函数y=sin(2x+$\frac{π}{3}$)的图象(  )
A.向左平移$\frac{π}{6}$单位即可B.向右平移$\frac{π}{6}$单位即可
C.向右平移$\frac{π}{3}$单位即可D.向左平移$\frac{π}{3}$单位即可

查看答案和解析>>

同步练习册答案