精英家教网 > 高中数学 > 题目详情
直线l:y=k(x-2)+2与圆C:x2+y2-2x-2y=0相切,则直线l的斜率为(  )
A、-1B、-2C、1D、2
考点:直线与圆的位置关系
专题:直线与圆
分析:根据直线和圆相切的等价条件进行求解即可.
解答: 解:圆的标准方程为(x-1)2+(y-1)2=2,则圆心(1,1),半径R=
2

若直线和圆相切,
则圆心到直线kx-y+2-2k=0的距离d=
|k-1+2-2k|
1+k2
=
|1-k|
1+k2
=
2

解得k=-1,
故选:A
点评:本题主要考查直线和圆的位置关系的判断,根据直线和圆相切的等价条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sin300°的值是(  )
A、-
1
2
B、-
3
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积S=a2-(b-c)2且b+c=8,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据以下给出的程序,画出其相应的程序框图,并指明该算法的功能.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程ax2+2x+1=0至少有一个负根,则实数x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的周期:y=cos2x+sin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)是奇函数,且x>0时,f(x)=ln(x2+2x+2);
(1)求f(x)的解析式;
(2)若方程f(x)-m=0无解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

-
π
12
弧度角在第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-
1
100
(x-60)2+41(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=-
99
100
(100-x)2+
294
5
(100-x)+160(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1),(2),该方案是否具有实施价值?

查看答案和解析>>

同步练习册答案