精英家教网 > 高中数学 > 题目详情
函数f(x)=-x3+3x2,设g(x)=6lnx-f′(x)(其中f′(x)为f(x)的导函数),若曲线y=g(x)在不同两点A(x1,g(x1))、B(x2,g(x2))处的切线互相平行,且
g(x1)+g(x2)x1+x2
≥m
恒成立,求实数m的最大值.
分析:根据曲线y=g(x)在不同两点A(x1,g(x1))、B(x2,g(x2))处的切线互相平行得到有g′(x1)=g′(x2)且x1≠x2,可求出x1x2的值,然后利用函数的单调性研究
g(x1)+g(x2)
x1+x2
的最小值,从而可求出m的取值范围,求出所求.
解答:解:∵f′(x)=-3x2+6x,∴g(x)=6lnx-f′(x)=6lnx+3x2-6x
∴g′(x)=
6
x
+6x-6
依题意有g′(x1)=g′(x2)且x1≠x2
6
x1
+6x1-6=
6
x2
+6x2-6
∴x1x2=1
g(x1)+g(x2)
x1+x2
=
6ln(x1x2)+3
(x
2
1
+x
2
2
)-6(x1+x2)
x1+x2
=
3
(x
 
1
+x
 
2
)2-6(x1+x2)-6
x1+x2

=3(x1+x2)-
6
x1+x2
-6
令x1+x2=t,则t>2,∵φ(t)=3t-
6
t
-6在(2,+∞)上单调递增
∴φ(t)>φ(2)=-3
g(x1)+g(x2)
x1+x2
>-3
∴m≤-3
∴实数m的最大值为-3.
点评:本题主要考查了函数恒成立问题,以及利用函数的单调性求函数的最值,同时考查了计算能力和转化的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x2+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
,若x=
2
3
时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知函数f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3+ax2-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根. 这四种说法中,正确的个数是(  )

查看答案和解析>>

同步练习册答案