【题目】如图,多面体ABCDEF中,四边形ABCD是矩形,EF∥AD,FA⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于点P
(1)证明:PF∥面ECD;
(2)求二面角B﹣EC﹣A的大小.
【答案】
(1)证明:取CD中点G,连结EG、PG,
∵点P为矩形ABCD对角线交点,
∴在△ACD中,PG AD,
又EF=1,AD=2,EF∥AD,∴EF PG,
∴四边形EFPG是平行四边形,
∴FP∥EG,
又FP平面ECD,EG平面ECD,
∴FP∥平面ECD.
(2)解:由题意,以AB所在直线为x轴,
AD所在直线为y轴,AF所在直线为z轴,建立空间直角坐标系,
则F(0,0,1),B(1,0,0),C(1,2,0),E(0,1,1),
∴ =(0,2,0), =(1,1,﹣1), =(1,2,0),
取FB中点H,连结AH,则 =( ),
∵ =0, =0,
∴AH⊥平面EBC,
故取平面AEC法向量为 =( ),
设平面AEC的法向量 =(x,y,1),
则 ,∴ =(2,﹣1,1),
cos< >= = = ,
∴二面角B﹣EC﹣A的大小为 .
【解析】(1)取CD中点G,连结EG、PG,推导出四边形EFPG是平行四边形,由此能证明FP∥平面ECD.(2)以AB所在直线为x轴,AD所在直线为y轴,AF所在直线为z轴,建立空间直角坐标系,利用向量法能求出二面角B﹣EC﹣A的大小.
【考点精析】利用直线与平面平行的判定对题目进行判断即可得到答案,需要熟知平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,依次连接椭圆的四个顶点得到的菱形面积为4.
(1)求椭圆的方程;
(2)过点且斜率为的直线交椭圆于, 两点,设与面积之比为(其中为坐标原点),当时,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在以、、、、、为顶点的五面体中,平面平面,,四边形为平行四边形,且.
(1)求证:;
(2)若,,直线与平面所成角为,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】①线性回归方程对应的直线至少经过其样本数据点中的一个点;
②若两个变量的线性相关性越强,则相关系数的绝对值越接近于;
③在某项测量中,测量结果服从正态分布 ,若位于区域内的概率为,则位于区域内的概率为;
④对分类变量与的随机变量K2的观测值k来说,k越小,判断“与有关系”的把握越大.其中真命题的序号为( )
A. ①④ B. ②④ C. ①③ D. ②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项等比数列{an}的前n项和为Sn , 且S2=6,S4=30,n∈N* , 数列{bn}满足bnbn+1=an , b1=1
(1)求an , bn;
(2)求数列{bn}的前n项和为Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点与两个定点, 的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线被所截得的线段的长为 8,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 ,若f(x)=mn. (I)求f(x)的单调递增区间;
(II)己知△ABC的三内角A,B,C对边分别为a,b,c,且a=3,f ,sinC=2sinB,求A,c,b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com