【题目】如图,设抛物线的焦点为F,准线为l,过准线l上一点且斜率为k的直线交抛物线C于A,B两点,线段AB的中点为P,直线PF交抛物线C于D,E两点.
(1)求抛物线C的方程及k的取值范围;
(2)是否存在k值,使点P是线段DE的中点?若存在,求出k值,若不存在,请说明理由.
【答案】(1);(2)不存在,理由见解析.
【解析】
(1)由抛物线准线方程可以求出p的值,进而得到抛物线方程,联立直线与抛物线方程,由于直线与抛物线由两个交点, 所以,就可以得到k的取值范围;
(2)由(1)得,所以,求出点P的坐标,可得直线PF的方程,联立抛物线方程,再由韦达定理,结合中点坐标公式求解即可得出结论.
(1)由已知得,
∴.
∴抛物线方程为.
设的方程为,,,,,
由得.
,
解得,
注意到不符合题意,所以.
(2)不存在k值,使点P是线段DE的中点,理由如下:
由(1)得,
所以,
所以,,
直线PF的方程为.
由得,
.
点P为线段DE的中点时,有,即,
因为,所以此方程无实数根,
因此不存在k值,使点P是线段DE的中点.
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①函数在上单调递减,在上单调递增;
②若函数在上有两个零点,则的取值范围是;
③函数在上单调递减;
④当时,函数的最大值为.
上述命题正确的是__________(填序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形中,,,过点作的垂线,交的延长线于点,.连结,交于点,如图1,将沿折起,使得点到达点的位置,如图2.
(1)证明:平面平面;
(2)若为的中点,为的中点,且平面平面,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数g(x)=﹣4sin2()+2图象上点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位长度,得到函数f(x)的图象,则下列说法正确的是( )
A.函数f(x)在区间[,]上单调递减
B.函数f(x)的最小正周期为2π
C.函数f(x)在区间[,]的最小值为
D.x是函数f(x)的一条对称轴
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣1)ex+ax2(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个零点x1,x2(x1<x2),证明:x1+x2<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,已知椭圆上存在点,使,且这样的点有且只有两个.
(1)求椭圆的离心率;
(2)过点的直线与椭圆相交于两点,且,是坐标原点,求的面积取得最大值时的椭圆方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:
编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
数量(单位:辆) | 37 | 104 | 147 | 196 | 216 |
(1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;
(2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年己登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:
(i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;
(ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)
参考公式及数据:对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为:;.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)x+alnx.
(1)求f(x)在(1,f(1))处的切线方程(用含a的式子表示)
(2)讨论f(x)的单调性;
(3)若f(x)存在两个极值点x1,x2,证明:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com