精英家教网 > 高中数学 > 题目详情

【题目】如图,设抛物线的焦点为F,准线为l,过准线l上一点且斜率为k的直线交抛物线CAB两点,线段AB的中点为P,直线PF交抛物线CDE两点.

1)求抛物线C的方程及k的取值范围;

2)是否存在k值,使点P是线段DE的中点?若存在,求出k值,若不存在,请说明理由.

【答案】1;(2)不存在,理由见解析.

【解析】

1)由抛物线准线方程可以求出p的值,进而得到抛物线方程,联立直线与抛物线方程,由于直线与抛物线由两个交点, 所以,就可以得到k的取值范围;

2)由(1)得,所以,求出点P的坐标,可得直线PF的方程,联立抛物线方程,再由韦达定理,结合中点坐标公式求解即可得出结论.

1)由已知得

.

∴抛物线方程为.

的方程为

.

解得

注意到不符合题意,所以.

2)不存在k值,使点P是线段DE的中点,理由如下:

由(1)得

所以

所以

直线PF的方程为.

.

P为线段DE的中点时,有,即

因为,所以此方程无实数根,

因此不存在k值,使点P是线段DE的中点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①函数上单调递减,在上单调递增;

②若函数上有两个零点,则的取值范围是

③函数上单调递减;

④当时,函数的最大值为.

上述命题正确的是__________(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形中,,过点作的垂线,交的延长线于点.连结,交于点,如图1,将沿折起,使得点到达点的位置,如图2.

(1)证明:平面平面

(2)若的中点,的中点,且平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数gx)=﹣4sin2+2图象上点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位长度,得到函数fx)的图象,则下列说法正确的是(

A.函数fx)在区间[]上单调递减

B.函数fx)的最小正周期为2π

C.函数fx)在区间[]的最小值为

D.x是函数fx)的一条对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=(x1ex+ax2aR.

1)讨论函数fx)的单调性;

2)若函数fx)有两个零点x1x2x1x2),证明:x1+x20.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,已知椭圆上存在点,使,且这样的点有且只有两个.

1)求椭圆的离心率;

2)过点的直线与椭圆相交于两点,且是坐标原点,求的面积取得最大值时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:

编号

1

2

3

4

5

年份

2014

2015

2016

2017

2018

数量(单位:辆)

37

104

147

196

216

1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;

2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年己登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:

i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;

ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)

参考公式及数据:对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxx+alnx

1)求fx)在(1f1))处的切线方程(用含a的式子表示)

2)讨论fx)的单调性;

3)若fx)存在两个极值点x1x2,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其图象的一条切线为.

1)求实数的值;

2)求证:若,则.

查看答案和解析>>

同步练习册答案