精英家教网 > 高中数学 > 题目详情
15.若一系列函数的解析式和值域相同,但是定义域不同,则称这些函数为“同族函数”,例如函数y=x2,x∈[1,2]与函数y=x2,x∈[-2,-1]为“同族函数”.下面函数解析式中能够被用来构造“同族函数”的是①②④.(填序号)
①y=$\frac{1}{{x}^{2}}$;②y=|x|;③y=$\frac{1}{x}$;④y=x2+1.

分析 由同族函数的定义,依次对函数构造同族函数即可.

解答 解:①y=$\frac{1}{{x}^{2}}$,x∈(1,2)与y=$\frac{1}{{x}^{2}}$,x∈(-2,-1)为“同族函数”,故成立;
②y=|x|,x∈(1,2)与y=|x|,x∈(-2,-1)为“同族函数”,故成立;
③∵y=$\frac{1}{x}$在定义域内的任意一个x值都有唯一一个y值与之对应,
故不可构造同族函数;
④y=x2+1,x∈(1,2)与y=x2+1,x∈(-2,-1)为“同族函数”,故成立;
故答案为:①②④.

点评 本题考查了学生对新定义的接受与应用能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若a=${∫}_{0}^{1}$x2dx,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}$)6的展开式中的常数项为-$\frac{20}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,A(4,-1),∠B、∠C的平分线所在直线的方程分别为l1:x-y-1=0和l2:x+y+2=0,求BC边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.当0≤x≤$\frac{π}{2}$时,函数f(x)=sinx-cosx的最大值与最小值分别为(  )
A.1,-1B.$\sqrt{2}$,-$\sqrt{2}$C.1,-$\sqrt{2}$D.$\sqrt{2}$,-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={(x,y)|y=2x+1},B={x|y=x-1},则A∩B=(  )
A.{-2}B.{(-2,-3)}C.D.{-3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线l1,l2相交于点P,并且分别与平面γ相交于点A,B两点,用符号表示为l1∩l2=P,l1∩平面γ=A,l2∩平面γ=B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.y=$\frac{2{x}^{2}+2x+5}{{x}^{2}+x+1}$的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设A、B两点是圆心都在直线x-y=0上的两个圆的交点,且A(-4,5).则点B的坐标为(5,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,⊙O是△ABC的外接圆,D是$\widehat{AC}$的中点,BD交AC于点E.
(1)求证:AD=$\sqrt{DE•DB}$;
(2)若CD=2$\sqrt{6}$,点O到AC的距离为1,求⊙O的半径r.

查看答案和解析>>

同步练习册答案