精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=fx)是定义域为R的偶函数.当x≥0时,,若关于x的方程[fx]2+afx+b=0abR有且仅有6个不同实数根,则实数a的取值范围是(  )

A. B.

C. D.

【答案】B

【解析】

根据题意,由函数的解析式以及奇偶性分析可得的最小值与极大值,要使关于的方程有且只有6个不同实数根,转化为必有两个根,可得,根据韦达定理可得答案.

根据题意,当时,

上递增,在上递减,当时,函数取得极大值

时,函数取得最小值0,

又由函数为偶函数,则上递增,在上递减,

时,函数取得极大值

时,函数取得最小值0,

要使关于的方程,有且只有6个不同实数根,

必有两个根

且必有的图象与的图象有两个交点,有两个根;

的图象与的图象有四个交点,由四个根,

关于的方程,有且只有6个不同实数根,

可得

又由

则有,即a的取值范围是,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校初一年级全年级共有名学生,为了拓展学生的知识面,在放寒假时要求学生在假期期间进行广泛的阅读,开学后老师对全年级学生的阅读量进行了问卷调查,得到了如图所示的频率分布直方图(部分已被损毁),统计人员记得根据频率直方图计算出学生的平均阅读量为万字.根据阅读量分组按分层抽样的方法从全年级人中抽出人来作进一步调查.

(1)从抽出的人中选出人来担任正副组长,求这两个组长中至少有一人的阅读量少于万字的概率;

(2)为进一步了解广泛阅读对今后学习的影响,现从抽出的人中挑选出阅读量低于万字和高于万字的同学,再从中随机选出人来长期跟踪调查,求这人中来自阅读量为万到万字的人数的概率分布列和期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的焦点分别为,离心率,过左焦点的直线与椭圆交于两点,,且.

(1)求椭圆的标准方程;

(2)过点的直线与椭圆有两个不同的交点,且点在点之间,试求面积之比的取值范围(其中为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知五面体ABCDEF中,四边形CDEF为矩形,,CD2DE2AD2AB4AC=

1)求证:AB平面ADE

2)求平面EBC与平面BCF所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中,分别在上,,现将四边形沿折起,使平面平面.

(Ⅰ)若,在折叠后的线段上是否存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由;

(Ⅱ)当三棱锥的体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Ox2y29及点C(21),过点C的直线l与圆O交于PQ两点,当OPQ的面积最大时,直线l的方程为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求经过点P(41),且在两坐标轴上的截距相等的直线方程.

(2)设直线yx2a与圆Cx2y22ay20相交于AB两点,若|AB|2,求圆C的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足,则下列函数中为增函数的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司一年需购买某种原料400吨,设公司每次都购买吨,每次运费为4万元,一年的总存储费用为万元.

1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?

2)要使一年的总运费与总存储费用之和不超过200万元,则每次购买量在什么范围?

查看答案和解析>>

同步练习册答案