【题目】已知函数y=f(x)是定义域为R的偶函数.当x≥0时,,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是( )
A. B.
C. D.
科目:高中数学 来源: 题型:
【题目】某校初一年级全年级共有名学生,为了拓展学生的知识面,在放寒假时要求学生在假期期间进行广泛的阅读,开学后老师对全年级学生的阅读量进行了问卷调查,得到了如图所示的频率分布直方图(部分已被损毁),统计人员记得根据频率直方图计算出学生的平均阅读量为万字.根据阅读量分组按分层抽样的方法从全年级人中抽出人来作进一步调查.
(1)从抽出的人中选出人来担任正副组长,求这两个组长中至少有一人的阅读量少于万字的概率;
(2)为进一步了解广泛阅读对今后学习的影响,现从抽出的人中挑选出阅读量低于万字和高于万字的同学,再从中随机选出人来长期跟踪调查,求这人中来自阅读量为万到万字的人数的概率分布列和期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆()的焦点分别为,,离心率,过左焦点的直线与椭圆交于,两点,,且.
(1)求椭圆的标准方程;
(2)过点的直线与椭圆有两个不同的交点,,且点在点,之间,试求和面积之比的取值范围(其中为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知五面体ABCDEF中,四边形CDEF为矩形,,CD=2DE=2AD=2AB=4,AC=,.
(1)求证:AB平面ADE;
(2)求平面EBC与平面BCF所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形中,,,,,,分别在,上,,现将四边形沿折起,使平面平面.
(Ⅰ)若,在折叠后的线段上是否存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由;
(Ⅱ)当三棱锥的体积最大时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)求经过点P(4,1),且在两坐标轴上的截距相等的直线方程.
(2)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,求圆C的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司一年需购买某种原料400吨,设公司每次都购买吨,每次运费为4万元,一年的总存储费用为万元.
(1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?
(2)要使一年的总运费与总存储费用之和不超过200万元,则每次购买量在什么范围?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com