精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)如图所示,是一个矩形花坛,其中米,米.现将矩形花坛扩建成一个更大的矩形花坛,要求:上,上,对角线点,且矩形的面积小于150平方米.

(1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并确定函数的定义域;

(2)当的长度是多少时,矩形的面积最小?并求最小面积.

【答案】(1),;(2),.

【解析】

试题(1)根据三角形的相似性,列出函数关系式,通分化成标准形式,求分式不等式的解集;(2)通过换元,令,则得到关于的函数,根据均值不等式,有的最小值.

试题解析:(1)由可得,

,且,解得函数的定义域为

(2)令,则

当且仅当时,取最小值,故当的长度为米时,矩形花坛的面积最小,最小面积为96平方米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,椭圆C)的离心率为,过点且斜率为1的直线被椭圆C截得的线段长为.

1)求椭圆C的方程;

2)设直线不经过点,且C相交于AB两点.若直线与直线的斜率的和为,证明:过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,以下结论正确的个数为(

①当时,函数的图象的对称中心为

②当时,函数上为单调递减函数;

③若函数上不单调,则

④当时,上的最大值为15

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)若上成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·江苏高考)如图,在三棱锥ABCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,其中是数列的前项和.

1)若数列是首项为,公比为的等比数列,求数列的通项公式;

2)若,求数列的通项公式;

3)在(2)的条件下,设,求证:数列中的任意一项总可以表示成该数列其他两项之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为14万元/辆,年销售量为辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为(01),则出厂价相应提高的比例为0.6,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.

1)若年销售量增加的比例为0.5,为使本年度的年利润比上年度有所增加,则投入成本增加的比例应在什么范围内?

2)若年销售量关于的函数为为常数),则当为何值时,本年度的年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面为等边三角形,且垂直于底面分别是的中点.

1)证明:平面平面

2)已知点在棱上且,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.

(1)若当时,,求此时的值;

(2)设,且

(i)试将表示为的函数,并求出的取值范围;

(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于试求两处喷泉间距离的最小值.

查看答案和解析>>

同步练习册答案