【题目】(本小题满分12分)如图所示,是一个矩形花坛,其中米,米.现将矩形花坛扩建成一个更大的矩形花坛,要求:在上,在上,对角线过点,且矩形的面积小于150平方米.
(1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并确定函数的定义域;
(2)当的长度是多少时,矩形的面积最小?并求最小面积.
科目:高中数学 来源: 题型:
【题目】已知点,,椭圆C:()的离心率为,过点且斜率为1的直线被椭圆C截得的线段长为.
(1)求椭圆C的方程;
(2)设直线不经过点,且与C相交于A,B两点.若直线与直线的斜率的和为,证明:过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,以下结论正确的个数为( )
①当时,函数的图象的对称中心为;
②当时,函数在上为单调递减函数;
③若函数在上不单调,则;
④当时,在上的最大值为15.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足,其中是数列的前项和.
(1)若数列是首项为,公比为的等比数列,求数列的通项公式;
(2)若,,求数列的通项公式;
(3)在(2)的条件下,设,求证:数列中的任意一项总可以表示成该数列其他两项之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为14万元/辆,年销售量为辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为(0<<1),则出厂价相应提高的比例为0.6,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(1)若年销售量增加的比例为0.5,为使本年度的年利润比上年度有所增加,则投入成本增加的比例应在什么范围内?
(2)若年销售量关于的函数为为常数),则当为何值时,本年度的年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面为等边三角形,且垂直于底面, ,分别是的中点.
(1)证明:平面平面;
(2)已知点在棱上且,求直线与平面所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.
(1)若当时,,求此时的值;
(2)设,且.
(i)试将表示为的函数,并求出的取值范围;
(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com